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We show that a recently proposed solution to the hierarchy problem simultaneously solves the strong
CP problem, without requiring an axion or any further new physics. Consistency of black hole physics
implies a nontrivial relation between the number of particle species and particle masses, so that with
~10%2 copies of the standard model, the TeV scale is naturally explained. At the same time, as shown here,
this setup predicts a typical expected value of the strong-CP parameter in QCD of § ~ 10~°. This strongly
motivates a more sensitive measurement of the neutron electric dipole moment.
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Introduction.—The standard model suffers from two
major naturalness problems. These are the hierarchy prob-
lem and the strong CP problem [1]. Usually, new physics
that is introduced to address one of these problems makes
the other one even more severe. For example, low energy
supersymmetry, introduced to stabilize the Higgs boson
mass, brings at the same time many new arbitrary
CP-violating phases, which give additional contributions
to strong CP-breaking. And the Peccei-Quinn idea [2],
which beautifully solves the strong CP problem, requires
a new intermediate scale of spontaneous PQ symmetry
breaking, which has to be explained, to set the value of
the axion [3] decay constant.

In this work, we show that the recently suggested solu-
tion of the hierarchy problem which postulates the exis-
tence of N ~ 10°? standard model copies [4], auto-
matically solves the strong CP problem as well, without
introducing axions or any additional physics in the observ-
able sector. The new solution of the hierarchy problem
relies on a bound from a consistency condition on Black
Hole physics, relating particle masses M and the number N
of particle species. For large N it reads [4]

M2 < N"'M3, (1)

where Mp is the Planck mass. It was further shown [5] that
the gravitational cutoff of such a theory is at the scale
_Mp

A N 2)
This can be seen by a number of arguments, perhaps the
simplest one being the observation that if black holes of
size A~! could be treated as classical objects (as they
normally would be treated in general relativity coupled to
small number of species), they would evaporate in time <
A1, pointing to the inconsistency of the assumption of
their classicality. Thus, standard perturbation theory breaks
down and gravity must change regime at scale A (in
agreement with perturbative renormalization of the
Planck mass [6,7]). Additional evidence for this conclusion
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comes from the fact that A is the maximal temperature of
the system. For a detailed discussion, we refer the reader to
[5].

The bound (1) offers the following *“‘cheap” solution to
the hierarchy problem. All one has to do is to postulate the
existence of N ~ 1032 copies of the standard model, that
talk to each other only through gravity. In the most eco-
nomical scenario, all the copies are related by a certain
permutation symmetry, so there are no new low energy
parameters in the theory and all the copies are strictly
identical.

Although a very low energy observer from each
Standard Model replica may be puzzled by the smallness
of the weak scale versus the Planck mass, the hierarchy is
guaranteed by black hole physics. If the cutoff of the theory
could be arbitrarily high, this would create an unprece-
dented situation in which the Higgs boson mass is stabi-
lized without any new physics at that scale. However with
the knowledge that A is a cutoff, everything falls into
place. The stabilizing ultraviolet physics will show up at
energy scale A, in the form of strong gravitational physics
and micro black holes.

We wish to show now, that the above model also solves
the strong CP problem. The key point, to be explained
below, is that the sum of all the #-angles is constrained by
the ratio of the cutoff A to the QCD scale. We have the
consistency relation

A4 1 M
) ” 3)

2035( T | T2 Al
Agen/  N* Agep

Here 0j, j=12,...,N, is the QCD #-parameter for the
Jj-th copy of the Standard Model. Notice that because of the
exact permutation symmetry, the value of the QCD scale is
common (to leading order), but not the value of the 6;
parameters, because they are integration constants. Had we
relaxed the exact symmetry requirement between the SM
copies, the bound (3) would change to
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where AgéD refers to the QCD scale of the jth copy.

Notice that these are general relations, irrespective of
whether we wish to solve the hierarchy problem or not. The
solution of the hierarchy problem corresponds to the
choice N ~ 10°2, which gives A ~ TeV. Then, from (3)
which follows from (18) derived below, the typical magni-
tude of @ is, on average,

A2
Aden

_ ! 2| ~10-9

Oy =5 2.0 7N 1077, (5)
for A = 1 TeV and Agcp = 300 MeV.

0-vacua as flux vacua.—In order to derive the relation
(3), it is useful to reformulate the strong-CP problem in the
equivalent language of the electric field of the QCD Chern-
Simons threeform (for a detailed discussion of this formal-
ism see [8] and references therein). It is well known that in
QCD the value of 6 is determined by the vacuum expecta-
tion value of the dual field strength (TrGG), so that the
former can only vanish if the latter does and vice versa.
More precisely, for small 6, we have

g~ (TrGG)

: (©)
Aden

where 6 refers to the total angle, with both the bare value
and the contribution from the phase of the quark mass
determinant included. The right-hand side is the leading
term in the expansion of an inverse-periodic function (call
it f(TrGG)), which determines the dependence of the
Lagrangian on TrGG. The precise form of this function
is unimportant for any of our conclusions, but we rely on
the exact properties that it has zeros for TrGG = 0 (thus
guaranteeing @ = 0 at these points, in accordance with the
Vafa-Witten proof of the energy dependence on 6 [9]) and
that its inverse periodicity guarantees the invariance of
physics under 6§ — 6 + 27. These are the only features
we shall need.

Evidently, an explanation for 6 being small is com-
pletely equivalent to a demonstration that TrGG is small.
Note that the latter gauge invariant can be rewritten as a
dual fourform field strength of a Chern-Simons threeform
in the following way (for simplicity, here we shall work in
units of the QCD scale)

2 -
$ TtGG = F = F,p5,5€P7, )
872
where
Fapys = 9aCpyer (®)
C is a Chern-Simons threeform, which can be written in

afy
terms of gluon fields as

2
_ 8 3
Caﬂy = W Tr(A[aAﬂAy] - EA[QGBA),O (9)
Here g is the QCD gauge coupling, A, = A%T? is the
gluon gauge field matrix, and 7¢ are the generators of the
SU(3) group.

Under a gauge transformation, C,g, shifts as
Capy = Capy * diaQpy) (10)
with
Qaﬁ ZAFQBB]w”, (11)

where w“ are the SU(3) gauge transformation parameters.
The fourform field strength (8) is of course invariant under
(10) and (11).

From the discussion above, it is clear that the
f-parameter is just an expectation value of the dual field
strength F"in units of Acp, and the 6 vacua are nothing but
vacua with different values of the constant threeform elec-
tric flux. Because in QCD there are no dynamical sources
for C,p,, its electric flux cannot be screened or changed,
either classically or quantum mechanically. This is why the
6 vacua obey a superselection rule.

Although it is not important for our discussion, we wish
to briefly note that the interpretation in terms of the three-
form gauge field is not just a useful formality, but has a
clear physical meaning. It is known [10] that at low en-
ergies, the threeform C, 5, becomes a massless gauge field,
and supports a long-range Coulomb-type constant electric
flux. The easiest way to see that C,g, does indeed behave
as a massless field, is to note that the correlator of the two
Chern-Simons currents has a pole at zero momentum,
which follows from the fact that the zero momentum limit
of the following correlator

lin(l)q“q” / d*xe*(0|TK ,(x)K,(0)|0) (12)
—

(where K, = €, BYC“BV is the Chern-Simons current) is
nonzero, because the topological susceptibility of the vac-
uum is a nonzero number in pure gluodynamics. Thus, the
threeform field develops a Coulomb propagator and can
support a long-range electric flux. In the absence of
sources, this electric field is strictly static. The would-be
sources for the threeform are two-dimensional surfaces
(axionic domain walls or the 2-branes), but these are absent
in minimal QCD. Since there are no sources, there is no
transition between vacua with different values of F.

In other words, at low energies the QCD Lagrangian
contains a massless threeform field, and can be written as
(suppressing combinatoric and A(SéD factors accompany-

ing higher powers of F)
S=]d4x6'F+F2+.... (13)

The above form has to be understood as an expansion of an
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inverse-periodic function f(F) in powers of F, an exact
property of which is that it has an extremum at F' = 0; the
explicit form is unimportant.

This language gives a simple way for understanding the
essence of the strong CP problem, as well as for seeing
how 6 determines the value of F. By partial integration, the
action can be written as ([11]; see also references therein)

S = 0[an A dXP A dX7Cppy + fd“xFZ o
(14)

where the first integral is taken over the 2 + 1 dimensional
world-volume of the space-time boundary surface, and X¢
are its coordinates. The equation of motion,

0, FrvaB — —g de“ AdXP A dX784(x — X), (15)

then trivially implies that the solution that vanishes at the
boundary is a step function, which away from the boundary
gives F = 6.

For example taking the boundary to be a flat and a static
surface located at X> = Z, the equation of motion becomes

3, FreB = —5(z — Z)e P, (16)

which gives F = §0(Z — z), where O(z) is the step func-
tion. Notice that in the absence of the boundary, the solu-
tion is an arbitrary constant which would-be equivalent to
effectively shifting 6, but in both cases the physical parity-
odd order parameter is the expectation value of F.

The threeform language shows that there is a complete
analogy between the #-vacua in (3 + 1)-dimensional
QCD, and the 6-vacua of 1 + 1-dimensional massless
electrodynamics [12]. This is not surprising since a mass-
less vector in 1 + 1 and a massless threeform 3 + 1 are
both nonpropagating, but both allow for a constant electric
field. Interestingly, this analogy goes beyond the massless
theory and also allows a unified description to be given of
mass generation in the 1+ 1 dimensional Schwinger
model and in (3 + 1)-dimensional QCD with an 1’ or
axion, purely in terms of topological entities [13], although
this is not relevant to our present application since we are
employing neither an axion nor a massless quark.

0-vacua in 103 copies of QCD.—Coming back to our
agenda, the connection (6) tells us that the physical pa-
rameter measuring the strong CP violation is the Chern-
Pontryagin electric flux F = TrGG. Working with this
quantity is convenient because we do not have to trace
separately the different contributions in 6, such as its
“bare’’ value and the contribution coming from the phase
of the quark mass determinant, or possibly from some other
sources. At the end of the day, these are all automatically
summed up in the expectation value of F. In QCD this fact
is not of much help in understanding the smallness of
strong CP breaking, since the natural value of F is
~Agep, implying 6 ~ 1.

But, what if we have 10°? copies of QCD? The physical
CP-odd order parameter is now the sum over all the
invariant fluxes. Any universally-coupled physics, such as
gravity, will probe this collective flux, and not the individ-
ual entries. The total flux, or other gauge-invariant observ-
ables, cannot exceed the cutoff of the theory (The value of
the flux is analogous to the value of the electric field. The
existence of a super-cutoff value of the flux, or of any other
invariant, would produce super-cutoff energy transfer rates
to test charges such as 2-branes, which is impossible. The
assumption that gauge-invariant observables such as the
electromagnetic field strengths, cannot be above the cutoff
of the theory, is a standard asumption in any effective field
theory picture and in this respect we are not invoking
anything new.). In other words, just as the individual fluxes
are bounded by the QCD scale, the sum over all of them
must be bounded by the cutoff of the theory. This condition
implies

4
ZFJ»SA“E%. (17)

The gauge-invariant variables appearing in higher terms in
(13) are also bounded:

F? M3
2 =M= (18)
Agep

for each n. The leading term in (18) gives (3); the bounds
from (17) and the higher power invariants give weaker
constraints.

Note that the F;’s which collectively saturate these
bounds could also contribute to the vacuum energy, adding
to the contributions from other VEV’s in each standard
model. They do not qualitatively change the Cosmological
Constant problem, however, which still requires cancel-
ation of a single (large) constant.

Naively, it may seem that by requiring an exact symme-
try between the Standard Model copies, we can set all 6 jto
be equal and thus use (3) to get a strict bound on (). This is
not true, however, because the 6;’s are not fundamental
parameters in the Lagrangian, but rather integration con-
stants determined by the value of the Cern-Simons electric
fluxes. These fluxes cannot be restricted to be equal by
symmetry, since they are solutions of the theory determin-
ing the different vacua, which satisfy a superselection rule.
Restricting the fluxes (equivalently the 6;’s) to be exactly
equal, is equivalent to picking a very special vacuum out of
the continuum, but this does not make the other vacua to go
away and the question of why we do not find ourselves with
0;’s that are not exactly equal would still remain.
Therefore, although there is a statistical upper bound on
the 6, we cannot claim that they should be equal.

Finally, we note that gravitational communication with
the other copies cannot induce a substantial shift of 6 in our
sector. A potential source for such a shift is the kinetic
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mixing of Chern-Simons three-forms between the different
copies: F;Fy. Such a mixing is not forbidden by gauge
symmetries, and can appear as a result of virtual black hole
exchange. However, as shown in [5], such operators can
only appear for j # k if they are suppressed by the scale
M2%A?, as opposed to the naive A*. The fundamental
reason for such a strong suppression is that micro black
holes cannot be universally coupled, so that interspecies
transitions must be gravitationally suppressed [5]. It fol-
lows that the shift of € in any given sector due to coupling
with other sectors is

A0~Z¢9 SZDZ~ 1072, (19)

and is unobservably small.

Conclusion.—We have shown that in the presence of
~10% copies of the Standard Model, the maximum al-
lowed value of the # parameter in each given copy weakens
by a factor of 1/+/N. Although the cumulative CP-odd flux
can be as large as the cut-off, the observable strong CP
parameter in each replica is small, and the strong CP
problem is solved automatically. A very interesting feature
of this mechanism is that the predicted value of 6 is in the
realm of the current observational upper bound. If a neu-
tron electric dipole moment is observed in next-generation
precision experiments, it could be strong indirect evidence
that whatever mechanism solves the hierarchy problem, is
also responsible for the small size of strong CP violation.

Of course, the specific framework of ~ 1032 copies of the
standard model leaves many open questions, in particular,
the cosmological implications of so many species; some of
these were studied in [14]. However, whether or not this
particular model is viable, simultaneously solving the hi-
erarchy problem and the strong CP problem may be a
general consequence of having a very large number of
degrees of freedom. Theories with very large numbers of

degrees of freedom generically imply a low cutoff for
gravity, suggesting that strong gravity effects such as micro
black hole production will be observed in particle colli-
sions above the TeV scale; this would provide another test
of such scenarios.
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