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To date, there has been no general way of determining if the Copernican principle—that we live at a
typical position in the Universe—is in fact a valid assumption, significantly weakening the foundations of
cosmology as a scientific endeavor. Here we present an observational test for the Copernican assumption
which can be automatically implemented while we search for dark energy in the coming decade. Our test
is entirely independent of any model for dark energy or theory of gravity and thereby represents a model-
independent test of the Copernican principle.
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Introduction.—The Copernican principle (CP) is at the
root of cosmology, having played a pivotal role from the
beginning of the modern history of the subject [1]. Einstein
erroneously imposed the CP in both space and time by
demanding a static Universe, forcing him to introduce the
repulsive cosmological constant. It is ironic that this very
same cosmological constant may be responsible for the
apparent accelerated expansion of the Universe, thereby
mysteriously placing the beginning of life on Earth dis-
concertingly near the special cosmic time when this accel-
eration began. The magnitude of the cosmological constant
required to achieve this is inexplicably small given our
current understanding of quantum physics. Given these
problems, might it not be just as natural for us to be living
at a special place in a Universe with no cosmological
constant or dark energy, despite the charged religious con-
notations it would imply? Although violation of the CP
would not solve the cosmological constant problem, it
would allow an explanation of the data without the need
for any dark energy. Of course, the bedrock of the standard
model relies on the reasonable assumption that we are not
living at a special place. But to place cosmology on a firm
scientific basis, it is ever more clear that this matter must be
settled observationally without theoretical bias.

Until now, this meant trying to develop inhomogeneous
and/or anisotropic models to the level of sophistication that
they could be tested against observations [2]—a laborious
task given the complexity of the Einstein field equations.
The usual argument for ignoring these difficult models
comes from Occam’s razor: Why bother since we have a
simpler model which is working so well? While radial
inhomogeneity can fit any Hubble diagram perfectly [3–
5], in general it requires the introduction of an infinite
number of free parameters to do so, clearly disfavored
from a Bayesian point of view. However, it is not clear
that one- or two-parameter models of radial inhomogeneity
would not give as good a fit as homogeneous dark energy
models with the same number of degrees of freedom,
which leaves us in the same position of arbitrary model

building that we have at present in the standard paradigm
which instead parametrizes an otherwise arbitrary equation
of state for the dark energy w�z�.

Instead what we need is a model-independent test to
determine if the Copernican assumption is, in fact, vio-
lated. One elegant suggestion to falsify the CP uses obser-
vations of the cosmic microwave background (CMB) from
inside our light cone [6,7], by testing for either deviations
from a blackbody spectrum or deviations from isotropy at
distant clusters. These important methods are very difficult
and require precise control of systematic effects.
Furthermore, these tests have a fundamental limitation.
Even if we were to determine isotropy of the CMB for
all observers in the Universe, it would still not be enough to
prove homogeneity, unless we also proved that all fluid
components of the cosmic energy budget are comoving,
barotropic perfect fluids [8].

We present a new test for the CP which relies on a
consistency relation of the homogeneous and isotropic
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) models
between distances and the Hubble rate, both as a function
of redshift. We show that this is not satisfied for radially
inhomogeneous models, providing just such a mechanism
to test if we live in an approximation to a FLRW universe
or near the center of a spherically symmetric one.

Consistency relation.—In FLRW models, the luminosity
distance may be written as (in units where c � 1)

 dL�z� �
�1� z�

H0

�����������
��k

p sin
� �����������
��k

p Z z

0
dz0

H0

H�z0�

�
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where �k is the curvature parameter today and the expan-
sion rate H�z� takes the value H0 � H�0� today. The area
distance is defined using dL � �1� z�

2dA, and another
distance measure we will use is D � �1� z�dA. We may
rearrange Eq. (1) to give an expression for the curvature
parameter in terms of H�z� and D�z�:
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 �k �
�H�z�D0�z��2 � 1

�H0D�z��2
; (2)

where 0 � d=dz. This tells us how to measure the curvature
from distance and Hubble rate observations, independently
of any other model parameters or dark energy model.
Remarkably, this tells us the curvature today from these
measurements at any single redshift.

Given that the curvature parameter is independent of
redshift, we may differentiate this to obtain an expression
which must equal zero. The factor responsible for this is

 C �z� � 1�H2�DD00 �D02� �HH0DD0; (3)

which must be zero in any FLRW model at all redshifts, by
virtue of Eq. (1). This function may also be derived by
equating the two reconstructed functions for w�z� given by
Eqs. (2) and (3) in Ref. [9].

As we have not utilized the Friedmann equation, the
derivation of C�z� relies only on the metric of spacetime
and not on the theory of gravity nor on any matter model
present—it is therefore a purely geometric function.
Consequently, if the FLRW models are indeed the correct
background model, then we should expect to measure
C�z� � 0 (up to the amplitude of perturbations) in the
real Universe at all redshifts.

We may estimate the errors on C�z� using series expan-
sions for D�z� and H�z�, but with different FLRW parame-
ter values, and dark energy equations of state. At leading
order we have C�z� � �q�D�0 � q�H�0 �z�O�z2�, i.e., the dif-
ference between the separate deceleration parameters mea-
sured using D and H. Hence, at low redshift, our error on
C�z� is roughly the same as q0 as estimated using H�z�.

Prospects for constraining C�z� in the near future as an
independent confirmation of the standard model are excit-
ing. For example, finding w�z� from distance data requires
knowledge of D00�z�, while reconstructing it from H�z�
alone requires knowing H0�z� [9]. Taking derivatives of
observable functions introduces extra errors, so it might
in practice be simpler to measure f�H�z�D0�z��2 �
1g=�H0D�z��2 at different redshifts and check that it yields
the same value as it should by virtue of Eq. (2). If it is found
to change with redshift, then that is equivalent to finding
C�z� � 0 [10]. Thus, while we try to search for w�z�, we
can measure C�z� at the same time to a similar degree of
accuracy.

But what would a measurement C�z� � 0 imply, even if
only at one redshift? Since it is not dark energy or devia-
tions from general relativity, the origin must be a different
cosmological geometry which is not homogeneous.
Measuring C�z� � 0 at any redshift would pose serious
problems for cosmology.

We have given a necessary condition for violation of the
CP, but is it sufficient? In other words, could the CP be
violated while still having C�z� � 0? Consider Lemaı̂tre-
Tolman-Bondi (LTB) models, which can fit the Hubble

diagram without invoking dark energy [3]. These are
spherically symmetric models with each shell at radius r
evolving as a separate FLRW model. The generic scenario
is for each shell to be characterized by a different �k and
so have C�z� � 0; we show in the appendix that C�z� is a
freely specifiable function in these models.

Alternative tests.—In addition to the key test just pre-
sented, we present two other novel approaches to the
problem. Future cosmological data will allow us to mea-
sure w�z� (assuming FLRW and an appropriate parametri-
zation) to high accuracy [11]. With w�z� known, one can
make predictions for what will be observed with the
Alcock-Paczynski (AP) test [12]. The AP test relies on
the idea that a spherical object in real space will appear
oblate or prolate in redshift space due to the fact that the
radial size Lk is determined by �z=H�z� while the trans-
verse size L? is determined by dA�z�. By demanding that
L? � Lk, one can determine cosmic parameters, in par-
ticular, w�z�.

The canonical AP test in modern cosmology is provided
by the baryon acoustic oscillations (BAOs) which use the
excess signal at 	150 Mpc in the two-point correlation
function as a standard ruler. By observing this in both the
angular and the radial directions, BAOs will provide both
dA�z� and H�z� and hence allow us to measure w�z� to
similar accuracy as SNIa [13].

If the CP is violated through significant radial inhomo-
geneity, then clustering in real space will not be isotropic.
Hence, the assumption underlying the AP and BAO tests
(that the ‘‘bump’’ in the two-point correlation function is
isotropic) will be invalid. If one incorrectly assumes iso-
tropic clustering, one will reconstruct a w�z� that disagrees
with that from SNIa or other measurements. Put another
way, this would appear to violate distance duality (the
equivalence between luminosity and angular-diameter dis-
tances) [14]. Tantalizingly, such a mismatch has actually
been observed between current BAO and SNIa data at
about the 2� level [15].

There are at least three ways in which violation of the CP
would deform standard BAO results. First, the sound hori-
zon—the fundamental standard ruler of the BAO
method—would be different in the k and ? directions
(relative to the observer) and, in general, will differ from
the standard FLRW value (	150 Mpc today). Both will
cause problems. Second, the subsequent expansion of the
sound horizon in the k and ? directions will be governed
by different Hubble rates Hk and H?. Hence, even if the
sound horizon were isotropic and equal to the standard
FLRW value at decoupling, the subsequent evolution
would cause biases in measured cosmology. Finally, red-
shift distortions which need to be subtracted [16] in order
to apply the AP test will be significantly more complicated
to model and crucially will be correlated with the asym-
metry in the background expansion, unlike the FLRW case.
To see this, consider a galaxy moving in a gravitational
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potential � � �k � ��, which is the sum of the usual
perturbative gravitational potential and the radial inhomo-
geneity of the LTB background. Since r?�k � 0, the
k velocity of the galaxy will be different from the FLRW
case even if the �� contribution is identical in both cases.
This will modify the Doppler shift contribution to the
redshift of the galaxy and hence will modify the usual
Kaiser and ‘‘fingers of God’’ effects in a way that is
strongly correlated with the precise nature of the radial
inhomogeneity.

Each of these effects will cause a bias in the estimation
of dark energy parameters obtained by assuming a FLRW
background which will manifest as a mismatch with the
parameters derived from distance measurements. It is also
worth noting that the growth rates will be different in the k
and ? directions.

A significantly more exotic test for the CP is provided by
the realization that the dL�z� relation need not be single-
valued; see Figs 5–8 of Ref. [4]. The same redshift can
correspond to more than one distance. Clearly, in FLRW
this is impossible if the scale factor is monotonically
increasing, and the occurrence is related to the possibility
of gravitational blueshifts or redshifts adding to the stan-
dard expansion redshift. Hence, object A more distant than
object Bmay still have the same redshift if it lies at a higher
‘‘potential energy’’ which compensates the difference in
cosmic expansion. Such pathological behavior, visible in
number counts or in a large dispersion in SNIa distances
around the same redshift, would indicate clear violation of
the CP.

Discussion.—On what time scale can we expect these
tests to be implemented? A critical aspect of our test is that
H�z� measurements must come from a different data set
than used for distance data. Presently, however, most esti-
mates of H�z� rely implicitly on Eq. (2) or some other
aspect of the FLRW models themselves. At its simplest,
our test can be implemented by measuring �k at two
different redshifts requiringD,D0, andH at those redshifts.
Fortunately, future BAO surveys (WIGGLEZ, BOSS,
WFMOS, HETDEX, ADEPT, EUCLID, HSHS, and
SKA) will measure dA�z� and H�z� independently to better
than 1% over a wide range of redshifts z < 3, while com-
binations of future all-sky lensing, BAO, and SNIa surveys
will allow a measurement of �k with accuracy	0:04 [17]
which sets the approximate scale of how well we will test
the CP in the next decade. This should allow us to strongly
rule out inhomogeneity as the source of oversized cosmic
distances. Beyond these surveys, one can envisage large,
low-frequency HI surveys able to measure dA�z� and H�z�
at high redshift z	 10–100 which will allow the testing of
the CP in the first billion years of cosmic history when
most perturbation modes were still in the linear regime.

Finally, we note that BAOs are not the only way to
measure H�z�. Passively evolving galaxies provide a fam-
ily of cosmic chronometers, from which one can, in prin-

ciple, measure H�z� directly using spectral age dating:
H�z� � �1=�1� z�t0�z� [18]. Alternatively, measuring
the change of redshift _z�z� of an object over a long time
period can also provideH�z� [19] and so be used as a probe
of the CP based on the arguments presented here [20].

While the Copernican assumption is unlikely to be
dramatically wrong in our Hubble sphere, it is possible
that the dark energy phenomenon is concealing something
even more bizarre than a misconception of fundamental
physics. With suggestions such as chaotic inflation, ever-
lasting bouncing universes, and the like, it is statistically
possible that our part of the Universe has some unusual
features on a spatial, instead of a purely temporal, dimen-
sion; see, e.g., [21]. This cannot be ruled out at the moment
on anything other than philosophical grounds.

We have presented a new, straightforward, test of the
Copernican assumption which may play an important role
in our understanding of dark energy. While we strive to
determine the function w�z�, we have shown that we can
simultaneously constrain our Copernican function C�z� to a
similar degree of accuracy. At any redshift, a measurement
of C�z� � 0 would imply that the FLRW models are the
wrong foundation for cosmology and that something more
sophisticated must be considered instead. Even if the cos-
mos is FLRW on average, measurement of C�z� at small
redshifts will allow us to probe the scale at which homo-
geneity sets in. The proposed test does not depend on any
theory of gravity nor on our understanding of dark energy
but relies only on the geometry of the FLRW models
themselves.
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Pedro Ferreira, Ariel Goobar, Charles Hellaby, Roy
Maartens, Bob Nichol, and Jean-Phillipe Uzan for com-
ments and Charles Hellaby for providing the code used in
[25]. This research is funded by the NRF (South Africa).

Appendix: C�z� in LTB models.—The general spherically
symmetric metric for an irrotational dust matter source is
the LTB metric, given as ds2 � �dt2 � �@rR�t; r��

2=�1�
2E�r��dr2 � R2�t; r�d�2, where d�2 is the metric on a
unit 2-sphere andR�t; r� is the areal radius. E�r� 
 �1=2 is
an arbitrary function, representing the local curvature.

Solving the Einstein field equations, we have a general-
ized Friedmann equation for the angular Hubble rate:
H?�t; r� � @t lnR�t; r� � R�t; r�

�1
����������������������������������������������
2M�r�=R�t; r� � 2E�r�

p
,

where M�r� is another arbitrary function that gives the
gravitational mass within comoving radius r, derived
from the energy density ��t; r�. There is one further free
function of radius, the bang time. Of the three radial
degrees of freedom, one is gauge, while two are genuine
physical degrees of freedom and can be specified arbi-
trarily. We shall assume that the coordinate degree of
freedom specifies the bang time function; thus, specifying
fM�r�; E�r�g fully specifies the LTB model.

The expansion in the radial direction Hk�t; r� is not
the same as that in the angular direction but is given instead
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by [22] Hk�t; r� � @t@rR�t; r�=@rR�t; r� � H?�t; r� �
@rH?�t; r�=@r lnR�t; r�; in the FLRW limit @rH? � 0, so
the two Hubble rates are the same. This can present differ-
ent ways to view C�z� in LTB models, as we can use
whichever H�z� we like.

Finding the area distance explicitly in terms of red-
shift is discussed in detail in Ref. [4]. One chooses a radial
coordinate which flattens out the central observer’s null
cone. Evaluating R on the null cone turns it into the area
distance as a function of redshift: dA�z� � Rjnull cone. It has
been shown in Ref. [23] that dL�z�, or equivalently dA�z� �
R�z� [and soD�z�], may be considered as a free function of
the LTB model instead of M�r�. Therefore, the LTB model
may be specified by fD�z�; E�r�g. On the null cone we may
find the radial coordinate r�z�, implying that E�r�z�� �
E�z� is a free function instead of E�r�. As a free function,
we may replace E�z� with H?�z� using H?�t; r� evaluated
on the null cone, which means that an LTB model can be
specified instead by fD�z�; H?�z�g or fD�z�; Hk�z�g.

We see that, in an arbitrary LTB model, C�z� can be
anything, whether we interpret H�z� as H?�z�, Hk�z�, or a
combination of them [24]. If it is zero for both H?�z� and
Hk�z�, potentially giving a class of LTB models which
would fail our Copernican test, then that leaves just one
degree of freedom—exactly as in FLRW models with dark
energy. If this free function is H�z� � H?�z� � Hk�z�, say,
thenD�z�must be given by Eq. (1), which can be shown by
integrating C�z� � 0. Although we have not shown that
these models are necessarily FLRW, this would have to
be a very restricted family within the full LTB class. It
would be interesting to determine the exact conditions
under which C�z� � 0 observed from one location is a
sufficient condition for an expanding spacetime to be
FLRW.

This ‘‘Copernican function’’ therefore must be consid-
ered, as far as a test for the CP is concerned, as essentially
free and must therefore be determined by observations.
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