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We study the ‘‘entanglement spectrum’’ (a presentation of the Schmidt decomposition analogous to a
set of ‘‘energy levels’’) of a many-body state, and compare the Moore-Read model wave function for the
� � 5=2 fractional quantum Hall state with a generic 5=2 state obtained by finite-size diagonalization of
the second-Landau-level-projected Coulomb interactions. Their spectra share a common ‘‘gapless’’
structure, related to conformal field theory. In the model state, these are the only levels, while in the
‘‘generic’’ case, they are separated from the rest of the spectrum by a clear ‘‘entanglement gap’’, which
appears to remain finite in the thermodynamic limit. We propose that the low-lying entanglement
spectrum can be used as a ‘‘fingerprint’’ to identify topological order.
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There has been increasing recent interest in using quan-
tum entanglement as a probe to detect topological proper-
ties of many-body quantum states [1–4], in particular, the
states exhibiting the fractional quantum Hall effect
(FQHE) [5–13]. Among various measures of quantum
entanglement, the entanglement entropy has by far been
the favorite [12–14]. By partitioning a many-body quan-
tum system into two blocks, the entanglement entropy is
defined as the von Neumann entropy of the reduced
density-matrix of either one of the two blocks, and is a
single number that can be obtained from knowledge of the
density-matrix eigenvalue spectrum. The density matrix
may be written in the form �̂ � exp��Ĥ�, so that the
entanglement entropy is equivalent to the thermodynamic
entropy of a system described by a Hermitian
‘‘Hamiltonian’’ Ĥ at ‘‘temperature’’ T � 1; in the case of
a weak entanglement, the ‘‘excited states’’ eigenvalues of
Ĥ are separated from the ground state eigenvalue by a large
‘‘energy gap’’ that becomes infinite in the limit of a simple
product state with vanishing entanglement entropy. In this
Letter, we point out that the spectrum of the Hamiltonian
Ĥ, which we call the ‘‘entanglement spectrum’’, reveals
much more complete information than the entanglement
entropy, a single number.

We examined the entanglement spectrum of the ideal
Moore-Read (MR) state with Landau-level filling fraction
� � 1=2, and found that its structure appears to coincide
with that of the spectrum of the associated non-Abelian
conformal field theory (CFT). In particular, the spectrum is
gapless, and (up to a limit determined by the compactifi-
cation of the system to have a finite area) has the same
count of states (characters) at each momentum (Virasoro
level), although there is some splitting of the ‘‘energies.’’
The MR entanglement spectrum is also ‘‘nongeneric’’, as it
contains far fewer levels than the number expected from
counting Hilbert-space dimensions; this is a common prop-
erty of model wave functions, which lack part of the ‘‘zero-
point fluctuation’’ of a generic state.

We also examined the ‘‘realistic’’ � � 5=2 � 2� 1=2
state obtained by diagonalizing the Coulomb interaction
projected into the half-filled second Landau level, and
observed that all the extra levels expected in a generic
entanglement spectrum are present, but are separated by
a finite gap from gapless CFT-like low-lying states with
essentially the same structure as those of the Moore-Read
state. This gap appears to remain finite in the thermody-
namic limit. Thus the low-lying entanglement spectrum is
essentially a fingerprint which allows the associated CFT
(which characterizes the topological order) to be identified.

If Landau-level mixing is ignored, the � � 5=2 FQHE
system is equivalent to a � � 1=2 lowest Landau level with
interaction pseudopotentials [11] corresponding to a sim-
ple Coulomb interaction projected into the second Landau
level (we did not refine this to include the quantum well
form factor, which may be important for quantitative mod-
eling). In spherical geometry [11], the number of electrons
(Ne) and the total number of Landau-level orbitals (Norb)
are related by Norb � 2Ne � 2. In second-quantization, a
many-body state can be written in the basis of orbital
occupations; we used the Lz eigenstate basis to divide the
spherical surface at a line of latitude into two regions, so
the Norb orbitals are partitioned into NA

orb around the north
pole, and NB

orb around the south pole (this is spatially the
sharpest cut consistent with projection into a Landau
level), which is a partition of the Fock space H into two
parts H A �H B.

A Schmidt decomposition (equivalent to the singular
value decomposition of a matrix) of a many-body state
j i gives

 j i �
X

i

e��1=2��i j iAi � j 
i
Bi; (1)

where exp�� 1
2�i� � 0, j iAi 2H A, j iBi 2H B, and

h iAj 
j
Ai � h 

i
Bj 

j
Bi � �ij, giving exp�� 1

2�i� as the singu-
lar values and j iAi and j iBi the singular vectors. If the
state is normalized,

P
i exp���i� � 1, but it is not neces-

sary to impose the normalization condition.
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The �i’s are ‘‘energy levels’’ of a system with thermo-
dynamic entropy at temperature T � 1 equivalent to the
entanglement entropy, S �

P
i�i exp���i�, which has

been shown to contain information on the topological
properties of the many-body state [12]. The full structure
of the entanglement spectrum (logarithmic Schmidt spec-
trum) of levels �i contains much more information than the
entanglement entropy S, a single number. This is analo-
gous to the extra information about a condensed matter
system given by its low-energy excitation spectrum rather
than just by its ground state energy.

Because the FQHE ground state is translationally and
rotationally invariant (with quantum number Ltot � 0 on
the sphere), and the partitioning of Landau-level orbitals
conserves both gauge symmetry and rotational symmetry
along the z direction, in either block A or B both the
electron number (NA

e and NB
e ) and the total z-angular

momentum (LAz and LBz ) are good quantum numbers con-
strained by NA

e � N
B
e � Ne, LAz � LBz � 0. The entangle-

ment spectrum splits into distinct sectors labeled by NA
e

and LAz .
In the thermodynamic limit, the MR model state can be

represented by its ‘‘root configuration’’ [15], which has oc-
cupation numbers ‘‘11001100 � � � 110011’’, with a re-
peated sequence � � � 1100 � � � ; in spherical geometry, this
is terminated by ‘‘11’’ at both ends. This is the highest-
density ‘‘MR root configuration’’, which we define as an
occupation-number configuration satisfying a ‘‘general-
ized Pauli principle’’ that no group of 4 consecutive orbi-
tals contains more than 2 particles (this rule also applies to
MR states with quasiholes, and generates the CFT edge
spectrum of a finite MR droplet on the open plane [15].)
When the MR state is expanded in the occupation-number
basis, the only configurations (Slater determinants) present
are those obtained by starting from the root configuration,
and ‘‘squeezing’’ pairs of particles with Lz�m1,m2 closer
together, reducing jm1 �m2j, while preserving m1 �m2

[15].
From the root configuration, we see that there are three

distinct ways of partitioning the orbitals: (i) between two
0’s; (ii) between two 1’s; or (iii) between 0 and 1 (the
partitioning between 1 and 0 is equivalent to that between 0
and 1 by reflection symmetry). We use symbols P	0j0
,
P	1j1
, and P	0j1
 to represent the three cases, respec-
tively. This will correspond to choosing one of the three
sectors of the associated conformal field theory. For finite
systems, we always try to draw the boundary of the parti-
tioning either on the equator (if possible), or closest to the
equator but in the southern hemisphere. Moreover, we can
associate a ‘‘natural’’ value to NA

e for a particular partition-
ing, i.e., the total number of 1’s in the root occupation
sequence on the left-hand side to the boundary. In this
Letter, it is sufficient to consider only levels whose NA

e is
exactly this natural value. Table I describes the precise
meaning of these symbols for systems that are considered
here.

Figure 1 shows the spectra for each of the three different
ways of partitioning, for the Moore-Read state at Ne � 16
and Norb � 30. The spectrum not only has far fewer levels
than expected for a generic wave function, but also exhibits
an intriguing level-counting structure (as a function of LAz
and NA

e ) that resembles that of the associated conformal
field theory of the edge excitations. Intuitively, this is
because the boundary of the Landau-level partitioning in-
deed defines an edge shared by region A and B.

In the intuitive picture, the quantum entanglement be-
tween A and B arises from correlated quasihole excitations
across the boundary along which the partitioning is carried

TABLE I. The numbers in the parenthesis are values of (NA
orb,

NA
e ), respectively, for each system and partitioning as specified.

Ne P	0j0
 P	0j1
 P	1j1


10 (7,4) (8,4) (9,5)
12 or 14 (11,6) (12,6) (13,7)

16 (15,8) (16,8) (17,9)

FIG. 1. The complete entanglement spectra of the Ne � 16
and Norb � 30 Moore-Read state (only the relative values of �
and LAz are meaningful).
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out. Any quasihole excitation in region A necessarily
pushes electrons into region B, and vice versa. However,
the electron density anywhere on the sphere must remain
constant, which can be achieved if the quasihole excita-
tions in A and B are correlated (entangled). This gives the
empirical rules of counting the levels. Take the spectrum in
Fig. 1(a) as an example. The partitioning P	0j0
 results in
the root configuration 110011001100110 on the northern
hemisphere (region A), and it corresponds to the single
‘‘level’’ at the highest possible value of LAz � LAz;max � 64.
We measure the LAz by its deviation from LAz;max, i.e. �L :�
LAz;max � LAz , which has the physical meaning of being the
total z-angular momentum carried by the quasiholes. At
�L � 1, the levels correspond to edge excitations upon the
�L � 0 root configuration. There is exactly one edge
mode in this case, represented by the MR root configura-
tion 110011001100101.

The number of �L � 2 levels can be counted in exactly
the same way. There are three of them, of which the root
configurations are

 

1100110011001001
1100110011000110
1100110010101010

;

while for �L � 3, the five root configurations are

 

11001100110010001
11001100110001010
11001100101001100
11001100101010010
11001010101010100

:

The counting for the levels at small �L for P	0j1
 and
P	1j1
 can be obtained similarly.

For an infinite system in the thermodynamic limit, the
above idea gives an empirical counting rule of the number
of levels at any �L; i.e., it is the number of independent
quasihole excitations upon the semi-infinite root configu-
ration uniquely defined by the partitioning. For a finite
system, this rule explains the counting only for small
�L; for large �L, the finite-size limits the maximal
angular momentum that can be carried by an individual
quasihole. Therefore the number of levels at large �L in a
finite system will be smaller than the number expected
in an infinite system. Not only is this empirical rule con-
sistent with all our numerical calculation, but it also ex-
plains why P	0j0
 and P	0j1
 have essentially identical
low-lying structures. This is because the (semi-infinite)
configuration ‘‘� � � 1100110’’ is essentially equivalent
to ‘‘� � � 11001100’’ (with an extra ‘‘0’’ attached to the
right). We expect that P	0j0
 and P	0j1
 become exactly
identical in the thermodynamic limit.

For completeness, we list the root configurations asso-
ciated with the first few low-lying levels in Fig. 1(c).

 

�L � 0 : 11001100110011001
�L � 1 : 110011001100110001

110011001100101010
�L � 2 : 1100110011001100001

1100110011001010010
1100110011001001100
1100110010101010100

Figure 2 shows the spectra of the system of the same size
as in Fig. 1, i.e.,Ne � 16 andNorb � 30, but for the ground
state of the Coulomb interaction projected into the second
Landau level, obtained by direct diagonalization.
Interestingly, the low-lying levels have the same counting
structure as the corresponding Moore-Read case. We iden-
tify these low-lying levels as the ‘‘CFT’’ part of the spec-

FIG. 2. The low-lying entanglement spectra of the Ne � 16
and Norb � 30 ground state of the Coulomb interaction projected
into the second Landau level (there are levels beyond the regions
shown here, but they are not of interest to us). The insets show
the low-lying parts of the spectra of the Moore-Read state, for
comparison [see Fig. 1]. Note that the structure of the low-lying
spectrum is essentially identical to that of the ideal Moore-Read
state.
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trum, in contrast to the other generic, non-CFT levels that
are expected for generic many-body states. At relatively
small �L (up to a limit which grows with the size of the
system), the CFT levels are separated from the generic
levels by a clear gap, which we define as the distance
from the average of the CFT levels to the bottom of the
generic levels.

Figure 3 shows the value of this gap (at �L � 0, 1, 2,
respectively) as a function of the size of the system, based
on which we speculate that the gap between the CFT and
non-CFT levels remains finite in the thermodynamic limit
for all �L. The observed fact that the structure of the low-
lying spectrum is essentially identical to that of the Moore-
Read state, as well as the existence of the ‘‘entanglement
gap’’, serve as evidence that the realistic � � 5=2 FQH
states is indeed modeled by the Moore-Read state.

Assuming that the gap does remain finite in the thermo-
dynamic limit, characterization of the entanglement spec-
trum is a reliable way to identify a topologically ordered
state. While finite-size numerical studies often show im-
pressive (e.g., 99%) overlaps between model wave func-
tions (Laughlin, Moore-Read, etc.) and realistic states at
intermediate system sizes, this cannot persist in the ther-
modynamic limit. Furthermore, the entanglement spec-

trum is a property of the ground state wave-function
itself, as opposed to the physical excitations of a system
with boundaries, so allows direct comparison between
model states and physical ones.

The asymptotic behavior of the characters of a CFT (the
count of independent states at each Virasoro level, in each
sector) defines both the effective conformal anomaly ~c of
the CFT, and the quantum dimension of each sector. To the
extent that there is a clear separation of the gapless, low-
lying CFT-like modes and the generic (but ‘‘gapped’’)
modes, one can count the number of gapless modes as a
function of momentum parallel to the boundary separating
the two regions. For a finite-size system, these will match
the CFT characters up to some limit that grows with system
size. These numbers are integers, so are not subject to
numerical error, and in principle, both ~c and the quantum
dimensions can be extracted from their behavior as the
system size grows.

As a critical point is approached, the ‘‘entanglement
gap’’ may still be finite but well below the temperature T �
1 at which the von Neumann entropy is evaluated. We
suggest that the direct study of the low-lying entanglement
spectrum is a far more meaningful way to characterize
bipartite entanglement. Equivalently, the T ! 0 ‘‘low-
temperature’’ entropy of the modified family of density
matrices �̂�1=T� may prove useful, as this corresponds to the
thermodynamic entropy of the entanglement spectrum at
temperature T.
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FIG. 3. Entanglement gap as a function of 1=N. �0 is the gap at
�L � 0, i.e., the distance from the single CFT level at �L � 0
to the bottom of the generic (non-CFT) levels at �L � 0. At
�L � 1, 2, the gap �1;2 is defined as the distance from the
average of the CFT levels to the bottom of the generic levels. See
Table I for the details of various partitionings.
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