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Measurement-Only Topological Quantum Computation
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We remove the need to physically transport computational anyons around each other from the
implementation of computational gates in topological quantum computing. By using an anyonic analog
of quantum state teleportation, we show how the braiding transformations used to generate computational
gates may be produced through a series of topological charge measurements.
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Topological quantum computation (TQC) is an approach
to quantum computing that derives fault tolerance from the
intrinsically error-protected Hilbert spaces provided by the
nonlocal degrees of freedom of non-Abelian anyons [1-3].
To be computationally universal, the anyon model describ-
ing a topologically ordered system must be intricate
enough to permit operations capable of densely populating
the computational Hilbert space. At its conception, the
primitives envisioned as necessary for implementing
TQC were (1) creation of the appropriate non-Abelian
anyons, which will encode topologically protected qubits
in their nonlocal, mutual multidimensional state space,
(2) measurement of collective topological charge of any-
ons, for qubit initialization and readout, and (3) adiabatic
transportation of computational anyons around each other,
to produce braiding transformations that implement the
desired computational gates.

In an effort to simplify, or at least better understand the
TQC construct and what is essential to its architecture, we
reconsider the need for physically braiding computa-
tional anyons. We demonstrate that it is not necessary by
replacing it with an adaptive series of nondemolitional
topological charge measurements. Naturally, this
“measurement-only’” approach to TQC draws some anal-
ogy with other measurement-only approaches of quantum
computing [4], but has the advantage of not expending
entanglement resources, thus allowing for computations
of indefinite length (for fixed resources).

In this Letter, we only consider orthogonal, projective
measurements [5] of topological charge, for which the
probability and state transformation for outcome c is
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Such measurements potentially include Wilson loop mea-
surements in lattice models, energy splitting measurements
in fractional quantum Hall (FQH) and possibly other sys-
tems, and (the asymptotic limit of) interferometry mea-
surements when the measured charge c is Abelian. Though
these may involve or be related to the motion of some
anyons, the measured anyons are not moved (at least not
around each other).
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We use a diagrammatic representation of anyonic states
and operators acting on them, as described by an anyon
model (for definitions, including normalizations, see, e.g.,
[6]). Through a set of combinatorial rules, these diagrams
encode the purely topological properties of anyons, inde-
pendent of any particular physical representation. Using
this formalism, we show how projective measurement of
the topological charge of pairs of anyons enables quantum
state teleportation. We then show that repeated applications
of teleportation can have the same effect (up to an overall
phase) as a braiding exchange of two anyons. Multiple
applications of this protocol then allow any desired braid
to be mimicked without ever having to move the anyons.

In the isotopy invariant diagrammatic formalism, the
projector onto definite charge ¢ of anyons 1 and 2 (num-
bered from left to right) of definite charges a and b
is [7]
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This diagram should not be interpreted as worldlines rep-
resenting motion of the anyons; it signifies only that the
combined charge of the two anyons is measured, which,
as noted above, does not necessarily involve moving
them. When performing topological charge measurements,
one must be careful to avoid carrying them out in a manner
that results in undesired effects on the anyonic charge
correlations of the system, such as the introduction of
unintentional charge entanglement.

We represent the state encoded in the nonlocal internal
degrees of freedom of a collection of anyons by
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where we are presently only interested in manipulating the
anyon of definite charge a, and so leave implicit the addi-
tional anyon charge lines emanating from the box, corre-
sponding to the *““...”” (normalization factors are absorbed
into the box).
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In order to teleport the state information encoded by an
anyon of definite charge a to another anyon of definite
charge a, we introduce a particle-antiparticle pair produced
from vacuum, given by the state
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where a is the charge conjugate of a, and O is the trivial
“vacuum” charge, which is interchangeably represented
diagrammatically by either a line labeled 0, a dotted line,
or no line at all. The state in Eq. (4) has maximal anyonic
entanglement between its two anyons, and is the analog of
the maximally entangled Bell states typically used as the
entanglement resource in quantum state teleportation of
conventional qubits. Then, for the combined state

what we would like to do is perform a measurement of the
collective charge of anyons 2 and 3 for which the result is
vacuum charge 0. This applies the projector Héﬂ) and, after
applying an isotopy and renormalizing the state, results in
the post-measurement state
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where d, in the first line is the state renormalizing factor
[as in Eq. (1)] and %, = d,[F%“]y, is a phase. The trans-
formation from the state in Eq. (5) to the state in Eq. (6) is
an anyonic analog of quantum state teleportation that ex-
hibits a pathlike behavior specified by the measurement.
The encoded state information ¢ originally associated with
anyon 3 ends up being associated with anyon 1 instead,
while anyons 2 and 3 end up as the maximally entangled
pair.

Of course, since measurement outcomes are probabilis-
tic, we cannot guarantee that any given measurement will
have the desired outcome. Transformations between the
two fusion bases of the three anyons are realized by the
unitary F-moves
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and their inverses. This indicates that the probability of
collective charge measurement outcome f for anyons 2 and
3, given that anyons 1 and 2 were in the definite charge e
fusion channel, and vice-versa, is

Prob (el f) = Prob(fle) = [F4™],,2.  (8)

But we see that we can, in a sense, undo an undesired
measurement outcome of anyons 2 and 3 (f # 0), by
subsequently performing a measurement of anyons 1 and
2, as long as the measurement processes are nondemoli-
tional. This returns the system to a state in which anyons 1
and 2 have definite collective charge e (not necessarily 0
now), but otherwise leaves the encoded state information
undisturbed. We may now perform a measurement of any-
ons 2 and 3 again, with an entirely new chance of obtaining
the desired outcome (f = 0). This procedure may be re-
peated until we obtain the desired measurement outcome,
obtaining a string of measurement outcomes M =
{el, f1, ..., ey fu} (including the initialization e; for later
convenience in representing this process), where e; =
fn» =0, and so we call it “forced measurement.” The
probability of obtaining the desired outcome at the jth
measurement attempt in this procedure is

Prob (f; = Olej) = I[F§*]. o> = d.,/d; = dz?  (9)

where d, is the quantum dimension of the anyonic charge
x, and d, = 1 with equality if and only if x is Abelian (e.g.,
dy = 1). The average number of attempts until a desired
outcome is achieved in a forced measurement is thus (n) <
d?, and the probability of needing n > N attempts to obtain
the desired outcome is Prob(f,..., fy #0) =
(1 —d;?)V; ie., failure is exponentially suppressed in
the number of attempts.

Forced measurement is a probabilistically determined
adaptive series of measurements. More precisely, the mea-
surements to be carried out are predetermined, but the
number of times n that they need to be carried out is
probabilistically determined based on the first attainment
of the desired outcome f, = 0. The resulting operator
representing such a forced measurement transformation
acting on an ¢; = 0 initialized state, with the state renorm-
alizing factor A included, is
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(For improved clarity, we inserted dashed lines to partition
the diagram into sections corresponding to each individual
topological charge measurement projector.) The diagram-
matic evaluation in the second line is made simple by
applying charge conservation to the diagrammatic web in
the middle of the left-hand side. It may be treated as a blob
with only one charge a line entering it and one charge a
line leaving it, and so can simply be replaced by a charge a
line running straight through (as in the diagram on right-
hand side) multiplied by a constant factor. This constant
cancels with the other factors to leave the appropriate
normalization and an overall phase e¢'#¥, which depends
on the measurement outcomes M. Thus, through forced
measurement we obtain the transformation from Eq. (5) to

Eq. (6),
11 33‘_12”0, a; 001210, a; ¥(a, .. )23
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giving us anyonic teleportation [8].
Now we can produce the braiding transformations for
two anyons of definite charges a
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by introducing a maximally entangled anyon pair and
performing three forced measurements
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The spatial configuration of these anyons and the measure-
ments used are shown in Fig. 1. An important point to
emphasize is that the entanglement resource (the maxi-
mally entangled anyon pair) is fully replenished and re-
turned to its original location at the end of these processes.
This allows such measurement-generated braiding trans-
formations to be employed repeatedly, without exhausting
the resources.

It is now straightforward to apply these results to TQC.
We arrange our computational anyons in a linear array and
distribute maximally entangled pairs (more or less) be-
tween them, forming a quasi-one-dimensional array, as in
Fig. 2. These anyons all remain stationary and computa-
tional gates on the topological qubits are implemented via
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FIG. 1. Projective topological charge measurements of pairs of

anyons (a) 1 and 2, (b) 2 and 3, and (c) 2 and 4 are used to
implement anyonic state teleportation, which is used to produce
braiding transformations as in Egs. (13) and (14).

measurements. The relations in Eqgs. (13) and (14), give a
map between braiding transformations (with an irrelevant
overall phase) and measurements, so one may simply use
the established techniques of generating computational
gates from braiding transformations to determine the series
of measurements that should be performed to implement a
particular quantum algorithm. If the computational anyons
have self-dual charge a = @, we can use a more economi-
cal distribution of entanglement resource anyons, situating
only one anyon from each maximally entangled pair be-
tween each adjacent pair of computational anyons (i.e., the
second row of X’s in Fig. 2 is not needed). For TQC models
in which the computational anyons do not all have the same
anyonic charge, the same anyonic teleportation principles
may be applied, but a greater number of entanglement
resource anyons will be needed.

The basic operation in this TQC scheme is a measure-
ment, which is not topological in the sense that what is
measured is a nontopological quantity (e.g., current) that
infers information regarding the topological charge
through an approximate relation dictated by the particular
experimental setup used. This seems less robust than the
physical braiding operation it is used to replace; however,
the measured quantity is the topological charge of a pair of
quasiparticles, which is conserved so long as all other
quasiparticles are far away. Therefore, there is still a
form of topological protection, though a perhaps slightly
weaker one than in the braiding model, since measure-
ments are not entirely accurate. In the qubit model of
measurement-only quantum computation, on the other
hand, there is always the danger of interaction with the
environment causing an error in a qubit that we need to
measure.

FIG. 2. A quasi-one-dimensional array of stationary anyons
used for measurement-only topological quantum computing.
Maximally entangled pairs of anyons (denoted by X’s) are
situated between adjacent pairs of computational anyons (de-
noted by dots) to facilitate measurement induced braiding trans-
formations used to generate computational gates.
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The Ising or SU(2), anyons, such as those that are likely
to occur in second Landau level FQH states [9,10], have
anyonic charges 0, %, 1 (also known as I, o, ¢, respec-
tively). For TQC models based on such systems [11], the
computational anyons should have charge a = % and the
measurement outcomes will be ¢;, f; = 0, 1. The quantum
dimensions of these are dy =d; =1 and d;, = V2.
Unfortunately, quasiparticle braiding in these anyon mod-
els is not quite computationally universal, and so must be
supplemented by operations that are topologically unpro-
tected [12] or involve changing the topology of the system
[13]. Furthermore, the TQC model based on Ising/SU(2),
is a special case in which the interferometry measurements
employed (i.e., that of pairs of charge % anyons) are in fact
also projective measurements, because the measurement
outcome charges 0 and 1 are Abelian in these anyon
models, satisfying Eq. (15). This allows the methods de-
scribed in this Letter to be applied directly when using
interferometry measurements in such models.

Fibonacci anyons, which do have computationally uni-
versal braiding and might also occur in FQH states [14],
have anyonic charges 0, 1 (also known as I, &, respec-
tively). Computational anyons must have charge a = 1,
which has quantum dimension d; = ¢ = % (the golden
ratio), and the measurement outcomes will be ¢;, f; = 0, 1.

For TQC models based on SU(2), anyons [3], which
have computationally universal braiding for k = 3 and all
k =5, the computational anyons have charge a = %,
which has quantum dimension d,/, = 2cos;75, and the
measurement outcomes will be e;, f; =0, 1.

In contrast with projective measurement, interferometri-
cal measurement of topological charge is not quite as
simple and requires a density matrix formulation. In the
asymptotic limit, interferometry may effectively be treated
as a projective measurement of the target anyons’ collec-
tive charge, together with decoherence of anyonic charge
entanglement between the target anyons and those exterior
to the interferometry region [6,15]. Specifically, anyonic
charge entanglement encoded in the anyons’ density matrix
as nontrivial charge lines connecting the interior and exte-
rior interferometry regions will generically decohere due to
the interferometrical measurement process, leaving only
density matrix components with vacuum or no charge lines
connecting these regions. An interferometrical measure-
ment is the same as a projective measurement only when
the topological charge measurement outcome ¢ obeys
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which is the case if and only if ¢ is Abelian. Because of this
important distinction, the forced measurement process de-
scribed here is not generally applicable for all anyon
models when using interferometry for topological charge
measurement [though it is in certain special cases, such as

Ising/SU(2),]. Fortunately, an interferometrical version of
forced measurement may be attained by a slight procedural
modification that includes performing additional measure-
ments that involve up to 8 computational anyons [16].

We have described an anyonic analog of quantum state
teleportation and showed how it may be utilized to gen-
erate the braiding transformations R (up to a phase) from
an adaptive series of nondemolitional topological charge
measurements, rather than physical movement of the com-
putational anyons. This provides a new, measurement-only
approach to TQC, in which topological charge measure-
ment is the only primitive employed. In particular, we can
replace the primitives (2) and (3) from the introduction
with (2) nondemolitional measurement of collective topo-
logical charge of anyons, for qubit initialization and read-
out, and to implement the desired computational gates.
Exuviating the need for quasiparticle braiding, once con-
sidered an essential primitive of TQC, in favor of topologi-
cal charge measurement, which is unavoidably necessary
for qubit readout, may prove to be an essential disencum-
berment in the implementation of TQC.
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