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We present a theory of dynamical control by modulation for optimal decoherence reduction. The theory
is based on the non-Markovian Euler-Lagrange equation for the energy-constrained field that minimizes
the average dephasing rate of a qubit for any given dephasing spectrum.
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Introduction.—Quantum information processing har-
bors enormous unleashed potential in the form of efficient
algorithms for classically intractable tasks and uncondi-
tionally secure cryptography [1]. Perhaps the largest hurdle
on the way to a realization of this potential is the problem
of decoherence, which results when a quantum system,
such as a quantum computer, interacts with an uncontrol-
lable environment or bath [2]. Decoherence reduces the
information processing capabilities of quantum computers
to the point where they can be efficiently simulated on a
classical computer. In spite of dramatic progress in the
form of a theory of fault tolerant quantum error correction
(QEC) [3], finding methods for overcoming decoherence
that are both efficient and practical remains an important
challenge. An alternative to QEC that is substantially less
resource intensive is dynamical decoupling (DD) [4–6]. In
DD one applies a succession of short and strong pulses to
the system, designed to stroboscopically decouple it from
the environment. This can significantly slow down deco-
herence, though not halt it completely, since unlike QEC,
DD does not contain an entropy removal mechanism.
Similar in spirit to DD (in the sense of being feedback-
free), but more general, is the method we term here ‘‘dy-
namical control by modulation’’ (DCM), wherein one may
apply to the system a sequence of arbitrarily shaped pulses
whose duration may vary anywhere from the stroboscopic
limit to that of continuous dynamical modulation [7–12].
In the DCM approach, the decoherence rate is governed by
a universal expression, in the form of an overlap between
the bath-response and modulation spectra, subject to finite
spectral bandwidth and amplitude constraints.

Neither DD [4–6] nor DCM [7–12] studies have so far
gone beyond particular schemes for suppression of deco-
herence. What is lacking is a systematic theory for finding
the optimal modulation for any given decoherence process.
Here we apply variational principles to the DCM approach
in order to address this problem. We derive an equation for
the optimal, energy-constrained control by modulation
(ODCM) that minimizes dephasing, for any given dephas-
ing spectrum. We numerically solve this equation, and

compare the optimal modulation to energy-constrained
DD pulses. We show that ODCM always outperforms
DD when subjected to the same energy constraint. We
note that Ref. [6] developed an optimal DD pulse sequence
for the diagonal spin-boson model of pure dephasing, but
without an energy constraint, i.e., assuming zero-width
pulses. This was improved upon by perturbatively account-
ing for pulse widths in Ref. [13].

Model.—We consider a driven two-level system (qubit)
with ground and excited states jgi and jei separated by
energy !a (we set @ � 1), and Hamiltonian

 H�t� � �!a � �r�t��jeihej � �V�t�jgihej � H:c:�; (1)

where V�t� � ��t�e�i!at � c:c: is a time-dependent reso-
nant classical driving field with amplitude ��t�, and �r�!�
describes random, Gaussian distributed, zero-mean energy
fluctuations. Let j �t�i denote the solution of the time-
dependent Schrödinger equation with the Hamiltonian
H�t�, and let the density matrix ��t� � j �t�ih �t�j denote
the corresponding ensemble average over realizations of
�r�t�. We are interested in the average fidelity hF�t�i, where
h� � �i is the average over all possible initial pure states of
the fidelity F�t� � jh �0�j��t�j �0�ij. It can be shown that
[12]

 hF�t�i � 1� �R�t�t (2)

 R�t� � 2 Re
�Z t1

0
dt2��t1 � t2��

	�t1���t2�
�
t1

t
(3)

 ��t� � �r�t��r�0�; ��t� � e�i
R
t

0
dt1��t1� (4)

where 0<� & 1 is a known constant, h�it1t 

1
t

R
t
0 dt1 is

the time average, R�t� is the average modified dephasing
rate, ��t� is the second ensemble-average moment of the
random (stationary non-Markov) noise, and ��t� is the
phase factor associated with the modulation.

We impose the energy bound constraint

 

Z T

0
dtj��t�j2 � E (5)
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where T is the total modulation time and E is the energy
constraint. As a boundary condition we require that the
field is turned on; i.e., ��0� � 0.

Although the analysis below is given in the time domain,
it is advantageous to analyze the problem in the frequency
domain, in terms of the universal expressions [7,12]

 R�t� � 2�
Z 1
�1

d!G�!�Ft�!� (6)

 G�!� � �2���1
Z 1
�1

dt��t�ei!t (7)

 Ft�!� � j�t�!�j2=t; �t�!� �
1�������
2�
p

Z t

0
dt1��t1�ei!t1

(8)

where G�!� is the dephasing spectrum, �t�!� is the finite-
time Fourier transform of the modulation function, and
Ft�!� is the normalized spectral modulation intensity.

The expressions obtained [Eqs. (6)–(8)] are also appli-
cable to the more general model of a qubit undergoing
dephasing due to coupling to a finite-temperature bath of
harmonic oscillators with energies @!�. The qubit then has
an average modified dephasing rate of the form given by
Eqs. (2) and (6), where the dephasing spectrum is given by
[12]

 G�!� � �n�!� � 1�G0�!� � n��!�G0��!� (9)

 G0�!� �
X
�

j��j2��!�!�� (10)

where G0�!� is the zero-temperature bath spectrum, �� is
the off-diagonal coupling coefficient of the qubit to the
bath oscillator �, and n�!� � �e�! � 1��1 is the average
number of quanta in the oscillator (bath mode) with fre-
quency !, with � the inverse temperature.

Since R�t� is the overlap between the dephasing and
modulation spectra, it can be reduced by choosing an
appropriate modulation that reduces this overlap [7,9,12].
We shall show that the optimal modulation reduces the
spectral overlap of the dephasing and modulation spectra
(Fig. 2). However, since the energy constraint in the fre-

quency domain is nontrivial we shall derive the equations
for optimal modulation using the time domain.

Optimization.—We wish to find the optimal modulation,
i.e., time-dependent near-resonant field, that minimizes
R�t�. Calculus of variation is an often-used technique of
optimal control theory, e.g., [14,15]. We apply it to derive
the Euler-Lagrange (EL) equations for the energy-
constrained optimal modulation. The accumulated phase
due to the modulation is 	�t� �

R
t
0 d
��
�. Let us write

��t� � ~��t�ei�t, where ~��t� and � are the amplitude and
spectral center of the correlation function, respectively.
Using Eqs. (2) and (5), we can then derive the EL equation
for the optimal modulation [16]:

 

� �	�t� � �Z�t; 	�t��

Z�t; 	�t�� � h ~��jt� t1j� sin�	�t� �	�t1� � ��t� t1��i
t1
T ;

(11)

where � is the Lagrange multiplier. The boundary condi-
tions for the accumulated phase are 	�0� � _	�0� � 0,
which results in a smooth solution and accounts for turning
the control field on. Eliminating � we find that the optimal
control field shape is the solution to the following equation
[16]:

 

�	�t� �
�

����
E
p

Z�t; 	�t����������������������������������������������������������R
T
0 dt1j

Rt1
0 dt2Z�t2; 	�t2��j

2
q : (12)

Equation (12) is the central result of this work. It fur-
nishes the optimal time-dependent field amplitude, that
maximizes the average fidelity hF�t�i at the final time T,
via ��t� � _	�t�. Although Eq. (12) is a complicated non-
linear integro-differential equation, it is very useful indeed,
as we show next.

Linearized EL equation.—Assuming that we have a
good initial guess 	0�t� for the modulation, we can look
for the optimal deviation ��t� by writing 	�t� � 	0�t� �
��t�, where ��t� � 1. Expanding Eq. (11) in powers of ��t�
and retaining only the first order, the linearized EL equa-
tion becomes [16]

 � ���t� � hQ�t; t1;	0�t�����t� � ��t1��i
t1
T � �C�t;	0; ��

Q�t; t1;	0�t�� � ~��jt� t1j� cos�	0�t� �	0�t1� � ��t� t1�� C�t;	0�t�; �� � � �	0�t� � Z�t; 	0�t��:
(13)

This linearized EL equation is valid also in the case of short
time optimal modulation, for which we simply set 	0�t� �
0, subject to ��t� � 1 for 0 � t � T � 1.

Numerical analysis.—Armed with the equations for the
optimal modulation, we turn to solving them numerically
for specific decoherence scenarios, defined by their de-
phasing spectra G�!�. We obtain the numerical solution
to the integro-differential Eq. (12) via an iterative process,
where we guess a probable solution that satisfies the

boundary conditions and the constraint, use it in the
right-hand side of Eq. (12) to compute the integral, and
solve the resulting differential equation. The solution is
then used in the right-hand side of Eq. (12), and so on.

For the examples presented below, we checked that
several initial guesses converged to the same optimal
modulation. Most importantly, we found that the optimal
modulation is robust against random control field imper-
fections. This is due to the fact that the decoherence rate is

PRL 101, 010403 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
4 JULY 2008

010403-2



determined by the accumulated phase and not the instan-
taneous modulation, Eq. (4). Specifically, we found that a
10% zero-mean random pulse fluctuation results in less
than a 1% increase in the optimal dephasing rate.

We compare the optimal dephasing rate to the one
obtained by the popular periodic DD control (‘‘bang
bang’’) procedure [4], but to make the comparison mean-
ingful we impose the same energy constraint. Finite-
duration periodic DD against pure dephasing is the
‘‘bang bang’’ application of n � pulses and is given in
our setting by

 ��t� �
�
�=�;j
� t< j
��; j� 0; . . . ; n� 1
0; otherwise

(14)

where � < 
 is the width of each pulse and 
 is the interval
between pulses. The energy constraint E and the total
modulation duration T � n
� � are related via n �
�E=�2. In the frequency domain, the spectral modulation
intensity can be described by a series of peaks, where the
two main peaks are at
�=
. Thus, the peaks are shifted in
proportion to the energy invested in the modulation.

However, DD is not an admissible solution to our EL
equation due to its discontinuous derivative. In order to
improve the comparison, we also apply our linearized EL
equation with the DD modulation as an initial guess, and
obtain the optimal modulation in the vicinity of the DD
control, enabling us to compare this locally optimal modu-
lation to the DD control [see example (b)].

(a) Single-peak resonant dephasing spectrum.—This
simple dephasing spectrum describes a common scenario
where ��t� � e�t=tc�=tc, where � is the long-time dephas-
ing rate [R�t! 1� � 2��] and tc is the noise correlation
time. Figure 1(a) shows R�T�, normalized to the bare
(unmodulated) dephasing rate, as a function of the energy
constraint. As expected, the more energy is available for

modulation, the lower the dephasing rate. For low energies
the optimal modulation significantly outperforms DD,
while at higher energies this difference disappears. These
results can be understood from Fig. 2(a), by noticing that
the two central DD peaks have significant overlap with
G�!� at the low energy value shown. As E is increased at
fixed T the DD peaks move farther apart, and have less
overlap with G�!�, leading to improved performance.
Applying the linearized EL equation with DD as initial
guess yields only mild improvements (not shown). The
explanation for the superior performance of the optimal
modulation is also evident from Fig. 2(a): since higher
frequencies have lower coupling strength in this case, the
optimal control ‘‘reshapes’’ so as to maximize its weight in
the high-frequency range, to the extent permitted by the
energy constraint. The modulation can be well approxi-
mated by ��t� � a�1� e�t=T�t=T � 1��, where a is deter-
mined by the energy constraint, which fits the inset in
Fig. 1(a).

(b) Single-peak off-resonant dephasing spectrum.—This
dephasing spectrum describes a variation on the aforemen-
tioned scenario, where the spectral peak is shifted [� � 0
in ��t� � ~��t�ei�t], e.g., coupling to a nonresonant bath.
With no other constraints, the optimal modulation is trivi-
ally similar to the one of the resonant spectrum, with a
shifted energy constraint Enonres � Eres � �. To demon-
strate how this formalism can accommodate additional
constraints, we impose a positivity constraint, _	�t� � 0
(positive field amplitude), and obtain nontrivial behavior
of R�T� as a function of the energy-constraint; see
Fig. 1(b). Here we used the linearized EL equation with
the DD modulation (14) as an initial guess. For both the
DD and optimal modulations, we observe an initial in-
crease in the dephasing rate as a function of energy,
followed by a decrease. For DD, this can be interpreted
as a manifestation of the initial anti-Zeno effect and the
subsequent quantum Zeno effect [7,10]. Because of the
positivity constraint, modulations with low energy (both
DD and optimal) couple to more resonant modes of the
bath [Fig. 2(b)] and thus do worse than the unmodulated
case. The DD modulation is optimal for small energy
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FIG. 1 (color online). Average modified final decoherence rate
R�T�, normalized with respect to the unmodulated rate, as a
function of energy-constraint. DD: dashed magenta line. Optimal
modulation: solid blue line. Insets: Optimal modulation ��t� for
different energy constraints. (a) Single-peak resonant dephasing
spectrum (inset: E � 20). (b) Single-peak off-resonant spectrum
(inset: E � 50). (c) 1=f spectrum (inset: E � 30). (d) Multi-
peaked spectrum (inset: E � 30). (a), (c), and (d) compare DD
and the optimal modulation obtained via Eq. (12), while (b)
compares DD to the locally optimal modulation obtained via
Eq. (13) with the DD modulation as initial guess.
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FIG. 2 (color online). Dephasing spectrum G�!� (solid red
line), optimal (dot-dashed green line), and DD (dashed magenta
line) modulation spectra FT�!�, in arbitrary units (a.u.). Same
parameters as in the insets of Fig. 1.
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constraints, hence the decoherence rates of DD and our
optimal solution coincide. This is because the DD peaks do
not overlap the off-resonant spectral peak. However, as the
positive-frequency main DD peak [Fig. 2(b)] nears the off-
resonant spectral peak, with increased energy, the optimal
modulation diverges from the DD modulation, and ‘‘re-
shapes’’ itself so as to couple to higher modes of the bath.
In the time domain [Fig. 1(b) inset], this is seen as a
smoothing of the abrupt DD modulation. At even higher
energy constraints, there is once more no improvement by
the optimal modulation over DD, yet there is an improve-
ment over the unmodulated case. Over the entire range of
E, the optimal modulation results in a much flatter R�T�
than DD, which is an indicator of its robustness. While DD
is strongly influenced by the off-resonant peak, the optimal
modulation exploits the energy available to find the mini-
mal overlap, irrespective of dephasing spectrum.

(c) 1=f dephasing spectrum.—The ubiquitous 1=f de-
phasing spectrum that describes a variety of experiments—
e.g., charge noise in superconducting qubits [17]—is given
in our notation by G�!� / 1=!, with cutoffs !min and
!max. Figure 1(c) shows that as expected, the more energy
is available for modulation, the lower the dephasing rate.
Notice that due to the cutoff!min, a low energy modulation
does worse than the unmodulated case. Furthermore, since,
as in case (a), higher frequencies now have lower coupling
strength, the optimal control ‘‘reshapes’’ so as to have as
high a weight in the high-frequency range as the energy
constraint allows [Fig. 2(c)]. This is expressed in the time
domain [Fig. 1(c) inset] as the initial increase in the
modulation strength (t < 50). The later decrease in modu-
lation strength can be attributed to the lower cutoff, where
the optimal modulation benefits from lower frequencies,
i.e., lower modulation amplitudes. Upon comparing the
1=f case to the Lorentzian spectrum, Fig. 1(a), we observe
a similar optimal initial chirped modulation in the time
domain. Despite the differences in the long-time behavior
(due to the lower cutoff in the 1=f case), these two ex-
amples allow us to generalize to any dephasing spectrum
with a monotonically decreasing system-bath coupling
strength as a function of frequency. The optimal modula-
tion for such spectra will be an energy-constrained chirped
modulation, with variations due to other spectral character-
istics, e.g., cutoffs.

(d) Multipeaked dephasing spectrum.—This describes
the most general scenario, where there can be several
resonances and noise correlation times. Figure 1(d) shows
R�T� as a function of the energy constraint. Once again,
because DD does not account for the dephasing spectrum,
its performance is much worse than the optimal modula-
tion, whose ‘‘reshaping’’ results in monotonically improv-
ing performance: the peaks of the optimal modulation are
predominantly anticorrelated with the peaks of G�!�.

Conclusions.—We have found the optimal modulation
for countering pure dephasing upon imposing an energy
constraint on the DCM approach [7–12], by deriving and

solving the Euler-Lagrange equation (12). This yields op-
timal reduction of the overlap of the dephasing and the
modulation intensity spectra. We stress that our optimal
control theory results are also applicable to scenarios other
than pure dephasing, such as amplitude noise (relaxation),
due to the universality of Eqs. (2)–(8) [7,12]. The form of
the energy constraint will then differ in detail from the pure
dephasing case. However, our general conclusions about
the optimal modulation to minimize spectral overlap will
remain valid. We expect that the optimal modulation tech-
nique will find useful applications in quantum information
processing and quantum computation. The price is that one
must acquire intimate knowledge of the noise spectrum,
which is often neglected, as previous control techniques
such as DD and QEC had no use for it. We have shown that
this information can result in the maximization of fidelity,
under operational constraints.
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