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We present a novel flow instability that can arise in thin films of cytoskeletal fluids if the friction with
the substrate on which the film lies is sufficiently strong. We consider a two-dimensional, membrane-
bound fragment containing actin filaments that polymerize at the edge and depolymerize in the fragment.
Performing a linear stability analysis of the initial state due to perturbations of the fragment boundary, we
find, in the limit of large friction, that the perturbed actin velocity and pressure fields obey the same laws
governing the viscous fingering instability of an interface between immiscible fluids in a Hele-Shaw cell.
A remarkable feature of this instability is that it is independent of the strength of the interaction between
actin filaments and myosin motors.
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Shape change and motility allow cells to respond to their
environment and play central roles in many biological
processes such as embryonic development and wound
healing. The crawling of cells, such as keratocytes or
fibroblasts, involves the protrusion of a thin leading edge,
the lamellipodium, driven by the polymerization of the
actin cytoskeleton, the adhesion to the substrate via spe-
cific proteins, and molecular motor-enabled contraction of
the cytoskeleton to translocate the trailing cell body [1].
Cells lying on extracellular matrix, in vivo, or on a sub-
strate, in vitro, can be stationary or motile. Recently, cells
in vitro have been observed to spontaneously switch from
the stationary state in which their shape is roughly circu-
larly symmetric, with the nucleus at the center surrounded
by the lamellipodium, to a motile and anisotropic, usually
crescent-shaped state [2]. A crucial aspect of the motility
transition is the shape polarization of the cell occurring
prior to motility, in which a preferred direction is chosen
and which determines the direction of motion [2]. It is not
known yet to what degree the process of shape polarization
is biochemical or mechanical in nature.

Remarkably, physical units far simpler than eukaryotic
cells can undergo shape polarization and the transition to
self-sustained motion: the work of Ref. [3] showed that flat
cell fragments, containing only actin cytoskeleton and
myosin II motors enclosed by a plasma membrane,
undergo transitions between circularly symmetric, nonmo-
tile and crescent-shaped, motile states. That cell fragments
show similar shape transitions and motile behavior as full
cells has led us to study theoretically cell shape dynamics
in these simpler systems with fewer structural elements and
fewer measurable parameters.

The actin cytoskeleton is a highly complex medium: it is
polar as actin polymerizes at its ‘‘plus’’ end, facing the
membrane abutting the lamellipodium; it is viscoelastic;
and it is active and driven out of equilibrium by ATP
hydrolysis, needed for continuous polymerization (tread-
milling) and to generate myosin motor-induced stresses.

The interaction of the cell with its environment is also very
important; for example, cells crawling on a heterogeneous
substrate tend to migrate to regions of greater substrate
adhesion [4]. Cytoskeletal actin in a cell or cell fragment is
able to transmit forces to its substrate through transmem-
brane proteins [5–7], namely, integrins, which bind revers-
ibly to the substrate. If the actin velocity relative to the
substrate is small compared to a=�b, where a is a molecu-
lar size and �b is the average time during which an integrin
remains bound, then the force exerted by the moving
filaments on the substrate can be expressed as a friction
force, proportional to the actin velocity [8–11].

In this Letter, we demonstrate that polymerization and
large friction forces are sufficient to destabilize the shape
of an initially circular cell fragment. We start by consid-
ering a very simplified model of actin cytoskeletal flow in a
cell fragment, as shown schematically in Fig. 1. The frag-
ment is very thin and there is no flow or any spatial
dependence in the thickness direction; also we consider
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FIG. 1. Schematic drawing of actin cytoskeleton in the unper-
turbed, radial state of the fragment. The direction of average
actin polarization is radial, and is indicated by p � r̂.
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that the thickness of the fragment is constant. This assump-
tion may be appropriate to the study of cells or cell frag-
ments in confined geometries [12]. We also assume we can
lump the dynamics of the actin filaments, monomers,
motors, and cytosol in the fragment into a single compo-
nent theory. Furthermore, we treat the cytoskeleton as a
viscous, incompressible liquid, ignoring the elastic re-
sponse that occurs on times shorter than the viscoelastic
relaxation time. Rheological experiments have shown that
actin gels are only weakly compressible [13]. We discuss
our neglect of the elastic response further below.

Actin polymerization is regulated by proteins such as
those of the Wiskott-Aldrich syndrome family (WASP),
which localize in the cell membrane at the fragment edge
[14]. For the purposes of this work, it is sufficient to
assume that actin polymerizes at the fragment edge and
in the direction normal to the boundary. Newly polymer-
ized actin flows away from the fragment edge by treadmil-
ling, due the turnover of free actin monomers back to the
edge for further polymerization that is enabled by depoly-
merization in the bulk. For simplicity, we assume that
depolymerization is spatially uniform and occurs at a rate
proportional to the filament density.

These simplifications imply that the actin flow in the
unperturbed, circular state induced by localized polymer-
ization and uniform depolymerization is imposed by the
continuity equation r � ��v0� � �kd�, where � is the
actin filament density and kd is the depolymerization
rate. The assumption of incompressibility directly leads
to the radially directed treadmilling speed v0 � �

kd
2 r.

Note that in the stationary state continuity requires that
kd
2 R0 � vp, where R0 is the unperturbed fragment radius
and vp is the polymerization speed [15].

The cytoskeleton dynamics is described here using the
hydrodynamic equations for single component, active po-
lar gels of Ref. [16], which themselves are a generalization
of the hydrodynamics of liquid crystals [17,18] modified to
account for the coupling between stresses and motors as
well as between actin polarization and motors. We will find
below that the fragment instability is driven by actin tread-
milling and friction with the substrate; at the level of linear
stability analysis, it is reasonable that the polarization
dynamics are not important and we assume throughout
that the polarization field p is everywhere a unit vector
pointing in the radial direction r̂. Ignoring the dynamics of
the polarization field, the constitutive laws of Ref. [16]
reduce to those for an isotropic, viscous fluid of viscosity
�, augmented by an active term in the deviatory stress
component �rr that reflects the myosin-mediated interac-
tion between actin filaments that are nearly aligned: that is,
� � 2�u� ���r̂ r̂ , where � is the actin viscosity; u is
the velocity gradient tensor; �� is the chemical potential
difference between ATP and its hydrolysis products; and
where for contractile motors the activity coefficient � is
negative [19]. The constitutive laws are completed at low

Reynolds numbers by the force balancer � � � rP� �v,
where � is the friction coefficient between the cytoskeletal
filaments and the substrate. Scaling lengths by R0, times by
1=kd, and stresses and pressures by �kd (keeping the same
variable names for the new, dimensionless quantities), it
follows that viscosity and friction affect the cytoskeletal
dynamics through the dimensionless parameter �2 � �

�R2
0
.

In the limit of large friction, �! 0, the leading term in the
force balance is simply

 v ���2rP: (1)

The velocity satisfies a type of Darcy’s law, as it does in a
Hele-Shaw cell [20]. Based on available experimental
results �2 is in fact quite small. Measurements of traction
forces [21] and treadmilling [22] in keratocytes give � �
105 Pa � s=�2; similar measurements in fibroblasts for
tractions [23] and treadmilling [24] give � � 107 Pa �
s=�2. Furthermore, taking � ’ 104 Pa � s [25] and R0 ’
1� 10 �m we find �2 ’ 10�1 � 10�5.

We now perturb the edge of the fragment, so that in
terms of the polar angle 	 the fragment edge is now at a
position R�	; t� � 1� 
R�	; t�. For 
R�	; t� 	 1, we per-
form a linear stability analysis by writing 
R�	; t� �P
1
m�1 
Rm�t� cos�m	� and similarly for the two compo-

nents of the perturbed velocity field, 
vr �P
1
m�1 
vr;m�r; t� cos�m	� and 
v	 �

P
1
m�1 
v	;m�r; t�


sin�m	�, and the pressure field 
P �
P
1
m�1 
Pm�r; t�


cos�m	�. The m � 0 mode is stable because the density of
actin filaments in the fragment is fixed and we have also
assumed that the fragment thickness is fixed. Assuming
that the depolymerization rate does not change as a result
of the perturbation, it follows that r � 
v � 0. Applying
Eq. (1) to the perturbed quantities 
v and 
P, we find that
r2
P � 0 and therefore 
Pm�r; t� � rm and 
vr;m�r; t� �
�
v	;m�r; t� � Am�t�r

m�1. The coefficient Am�t� can be
found by imposing the force-free condition at the bound-
ary, namely, 
Pmjr�1 � 
Rm

dP0

dr jr�1 � 0, leading to
Am�t� �

m
2 
Rm�t�. The growth rate of the perturbation

modes 
Rm�t� is obtained by noting that, to linear order
in 
R,

 

d
Rm
dt

� 
vr;m�R0� � 
Rm
dv0

dr
; (2)

which, using the expression for Am�t�, gives d
Rm=dt �
!m
Rm, where the leading order growth rate, in units of
kd, is

 !m �
m� 1

2
�O��2�: (3)

Note that the mode m � 1, corresponding to an infinitesi-
mal translation of the circular fragment, is marginally
stable, as required by translational symmetry.

The linear dispersion relation, !m, is a common feature
to a number of Laplacian growth problems, for example,
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the viscous fingering instability that occurs at an interface
between two immiscible liquids in a Hele-Shaw cell [26].
The physics of the instability is understood as follows. The
pressure gradient at the edge is dP0

dr jr�1 > 0, and a pertur-
bation with 
R< 0, for example, requires a perturbed
pressure 
Pjr�1 > 0 to keep the boundary force-free, to
leading order in �2. An excess pressure at the edge relative
to the fragment center (
Pjr�0 � 0 for m> 0) drives an
inward-directed flow, thus amplifying the initial negative
perturbation.

Viscosity, surface tension, and motor activity affect the
growth rate, !m, at O��2�. In short, one obtains from the
radial component of the force balance a fourth order ordi-
nary differential equation in r for u � r
vr;m
 

�2

�
u�4� �

2

r
u�3� �

�2m2 � 1�

r2 u00 �
�2m2 � 1�

r3 u0

�
m2�m2 � 4�

r4 u
�
�

�
u00 �

1

r
u0 �

m2

r2 u
�
� 0; (4)

where the primes indicate differentiation with respect to r.
The four boundary conditions required are that 
vjr�0 �
0; that the edge of the perturbed fragment is force-free,
namely, 
�nnjr�1 � 0, where the subscript n refers to
direction normal to the cell fragment; and that, neglecting
the viscosity of the fragment’s surroundings compared with
the viscosity of the cytoskeleton, the tangential shear sat-
isfies 
�tnjr�1 � 0, where t refers to the direction tangent
to the perturbed fragment.

In the limit �! 0, Eq. (4) together with the four bound-
ary conditions is a singular perturbation problem.
Following the boundary layer techniques of Ref. [27], a
uniformly convergent approximation to 
vr;m on the inter-
val 0 � r � 1, valid to O��2�, is

 
vr;m�r; t� � rm�1fB0�t� � �
2
B2�t� � C2�t�e

��r�1�=���g;

(5)

where B0�t� �
m
2 
Rm�t� is the unperturbed growth rate

Am�t� calculated above, which is obtained from the bound-
ary condition 
�nnjr�1 � 0 at leading order [O���2�]. The
two other constants B2�t� and C2�t� are found, respectively,
by solving 
�nnjr�1 � 0 and 
�tnjr�1 � 0 at next-to-
leading order [O��0�], giving, by way of Eq. (2), a growth
rate

 !m � �m� 1�
�
1

2
�m�2

�
���
�kd

� 2m
��
�O��3�: (6)

Equation (6) shows that the stabilizing effect of viscosity is
proportional tom3 for largem. It can be easily seen that the
stabilizing effect of the plasma membrane tension also
scales as m3 (as does the effect of interface tension in the
viscous fingering instability in a Hele-Shaw cell [26]):
including membrane tension, the normal stress at the
boundary satisfies a two-dimensional Laplace law

�nnjr�1 � �

�
�kdR0


H, where � is the membrane tension

and where the mth mode perturbation in the membrane
curvature in the (r, 	) plane (ignoring changes in curvature
in the thickness direction) is 
H � �m2 � 1�
Rm cos�m	�.
The contribution of the membrane tension to A2�t� is
��2 �

�kdR0
m�m2�1�. Taking �’10�4 N=m [28] as an es-

timate for the membrane tension and kd ’ 0:2 s�1 [1] it is
clear that the stabilizing effect of membrane tension is
negligible compared to that of actin viscosity.

Equation (6) further shows that the contractile effect of
the motors is to stabilize the growth of perturbations,
proportional to m2. This result depends strongly on the
assumption, made for simplicity, that the filament polar-
ization in the perturbed fragment remains everywhere ra-
dial and is not a dynamical quantity in the problem.
Equation (6) shows that the relative contribution of myo-
sins to !m is proportional to ���

�kd
. Taking ��� ’ �103 Pa

[8], ���
�kd
’ �0:5, and therefore small compared to the

viscous contribution at O��2�.
Diffusion of free actin monomers also limits the insta-

bility growth; however, we may consider for now that the
diffusion constant, D, is such that D� kdR

2
0, so that

perturbations that are area-preserving at first order in 
R
do not affect the essentially spatially uniform monomer
density, and hence the polymerization rate, vp. We also
note that the time scale for the instability growth is set by
the depolymerization rate kd. Since the viscous relaxation
time � of actin cytoskeleton is on the order of a few seconds
[25], on the one hand the criterion for ignoring the frag-
ment’s elastic response, kd�	 1, might not be satisfied for
fragments. On the other hand, the ratio of the elastic and
friction terms of the stress will be roughly �2=�kd��, which
will not affect the zeroth order instability growth, Eq. (3).
A proper accounting of monomer diffusion and viscoelas-
ticity will be considered in future work.

We can also estimate the most unstable mode in the high
friction limit by maximizing !m in Eq. (6) with respect to
m. Ignoring the effect of motors, we find that for �2 � 0:01
mmax ’ 3. The most unstable mode depends, however,
quite strongly on �2. To know how the linear instability
of the most unstable mode affects the fragment shape at
later times would require a full nonlinear analysis, includ-
ing the dynamics of the polarization field.

Finally, it might be experimentally useful to have an
estimate of the critical value of friction, �c, for which
shape perturbations of a cell fragment become unstable.
This critical value is defined such that for � < �c, !m < 0
and for � > �c, !m > 0. It is conceivable that one could
observe the onset of growing shape perturbations by plat-
ing cell fragments on surfaces of varying degrees of adhe-
siveness or by culturing fragments from cells that have
been mutated to weaken or strengthen the binding of
integrins to the surface [29,30]. Equation (4) can be solved
numerically for different mode numbers m to find the
critical value �c as a function of motor strength,
j�j��=�kd; see Fig. 2.
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The numerical estimates of �c given in Fig. 2 are quali-
tatively consistent with the value obtained by setting!m �
0 in the asymptotic growth rate, Eq. (6): lower modes are
less stable as a function of increasing friction and motor
activity has a weak effect on the growth of shape
perturbations.

In summary, we have found that large substrate friction
and the pressure field created by treadmilling in an initially
circular cell fragment render it linearly unstable. This
instability has the potential to be relevant to the related
biophysical problems of cell shape change and cell motil-
ity, given that it presents a fundamentally hydrodynamic
means for cell dynamics, independent of biochemical sig-
naling and, significantly, of the presence or absence of
molecular motors. In this work we have ignored some
physics which may be relevant to actual cell fragments
and cells: namely, the dynamics of the actin filament
polarization, the elastic response on short time scales,
fragment height variations, and filament density variations.
In a more detailed calculation, we could include the effect
of height variations by considering an effective two-
dimensional compressibility, in a perturbative manner.
We feel, nonetheless, that the underlying simplicity of
this mechanism, that it is driven by actin polymerization,
depolymerization, and substrate friction, might make the
instability general enough and likely present when consid-
ering a more realistic model of shape change.
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FIG. 2. Critical value of friction, �c, in units of �=R2
0, versus

j�j��=�kd for m � 2 (solid line), m � 3 (long dashed line),
and m � 4 (short dashed line). Surface tension, �=�kdR0, is
taken to be zero.
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