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Cooperative interactions in the binding of multiple signaling molecules is a common mechanism for
enhancing the sensitivity of biological signaling systems. It is widely assumed this increase in sensitivity
of the mean response implies the ability to detect smaller signals. Extending the classic work of Berg and
Purcell [Biophys. J. 20, 193 (1977)] on the physical limits of chemoreception, we show that the random
arrival of diffusing signaling molecules at receptor sites constitutes a noise source that is not reduced by
cooperativity. Cooperativity makes reaching this limit easier, but cannot reduce the limit itself.
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In biological systems, many signals are carried by
changes in the concentration of various molecules, from
the small, such as cyclic nucleotides to the large, such as
transcription factors regulating gene expression. A striking
feature of these systems is their sensitivity: concentrations
can be quite small in absolute terms, and small fractional
changes in concentration can have a significant effect.
Thus, many transcription factors achieve their half maxi-
mal effect at nanomolar concentrations [1], and recent
studies indicate expression levels can be regulated to an
accuracy of �10%. Similarly, bacteria respond to small
changes in concentrations of molecules in their environ-
ment. These signals are transduced into changes in levels
of phosphorylated proteins; changes in the concentration of
a particular phosphorylated protein by less than�10% can
produce reliable differences in the output of the bacterial
flagellar motor [2], and so on. A natural question concerns
the origins of this sensitivity and its ultimate limits.

A central theme in biological regulation is that of coop-
erativity or allostery [3–5]: multiple ligands bound at
different sites on a single protein molecule can interact
so that the mean occupancy of these sites depends steeply
on ligand concentration. Indeed, conventional models pre-
dict that cooperative effects among many sites can produce
arbitrarily high sensitivity. But there is a difference be-
tween sensitivity in the mean response and reliable re-
sponse to small changes—there are limits to measure-
ment that cannot be evaded just by having an amplifier of
higher gain. Here we consider the ‘‘noise floor’’ for detec-
tion of small concentration changes by receptors exhibiting
cooperativity, or more generally, multiple internal states in
response to binding of multiple ligands. We find that while
cooperativity can reduce the effective noise level against
which small signals are discriminated, there is a physical
limit set by the size of the receptor complex, the diffusion
constant of the signaling molecule and its absolute con-
centration. Cooperativity can make it easier to approach
this limit (as with high gain amplifiers), but does not lead to
a fundamentally lower noise floor.

The classic discussion of noise in biochemical signaling
is by Berg and Purcell [6] . Their arguments were heuristic,
suggesting one should think of receptors with size ‘ as
counting molecules in a volume �‘3. Poisson statistics
then sets a limit to the counting precision that can be
reduced by averaging over time, but allowing a time
�‘2=D for the volume to be cleared by diffusion between
genuinely independent measurements. Thus, by averaging
for a time �, one can detect fractional changes in concen-
tration
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�

1������������
D‘ �c�
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Bacterial chemotaxis seems to operate close to this limit
[6]. The discussion of noise has been invigorated by ex-
periments that measure directly the noise in the regulation
of gene expression [7]; much theoretical work aims to
connect these data to specific kinetic models [8].
Recently we argued that even for these more complex
systems, there is a limit analogous to that derived by
Berg and Purcell, which should be independent of the
(often unknown) kinetic details [9]. Our argument was
based on the idea that binding of signaling molecules to
receptor sites usually is an equilibrium process, so that
fluctuations in the occupancy of the sites becomes a form
of thermal noise that can be analyzed using the fluctuation-
dissipation theorem. We considered multiple noninteract-
ing binding sites, showing how correlations among site
occupancies leads to behavior that approximates a single
larger receptor. Here we extend this to the case of cooper-
atively interacting binding sites. We begin with a general
analysis, and then work it out for a specific model.

Consider a receptor molecule or complex that has many
states labeled by an index i; the population of each state is
pi. The free energy of state i, with ni signaling molecules
bound, is Fi � Ei � ni�, where � is the chemical poten-
tial of the signaling molecule at the location of the receptor.
At low concentration, � � kBT lnc, with c in appropriate
units. The chemical kinetics of this system (which we do
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not specify in detail) determine the linear response of the
populations to changes in the Fi’s. In the frequency do-
main,

 �~pi�!� �
X
j

��0�ij �!�� ~Fj�!� (2)

 �
X
j

��0�ij �!�
�
� ~Ej�!� � njkBT

�~c�x0;!�
�c

�
; (3)

where all (un)binding of signaling molecules is taken to
occur at a single location x0 of the receptor.

The susceptibility ��0�ij �!� can encode interactions
among different binding sites, as it describes all possible
states of the receptor complex. For example, given two
binding sites that can be empty or occupied, four possible
states exist, labeled i � f00; 01; 10; 11g. Positive coopera-
tivity in this simplest of models results when the energy
decrease on binding the second ligand is greater than for
the first, E11 � E10 <E10 � E00. More complex, realistic
models ascribe cooperativity not to direct interaction be-
tween binding sites but rather to an interaction between the
binding and other conformational degrees of freedom of
the complex, as in the specific model discussed later.

To continue, we must count signaling molecules bound
to the receptor complex. Changes in this number act as a
source or sink for diffusion. The total number of bound
ligands is

P
inipi, and hence the diffusion equation for the

signaling molecule becomes
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dpi
dt

: (4)

We solve explicitly for the response to small changes in the
populations, again in the frequency domain:

 �~c�x0;!� � i!
�Z d3k

�2��3
1

�i!�Dk2

�X
i

ni�~pi�!�: (5)

The term in brackets is ultraviolet divergent because we
treat the receptor complex as a point object. As in Ref [9]
we remove the divergence by cutting off the k integrals at a
scale kmax � �=‘, where ‘ is the size of the complex. In the
low frequency limit !� D=‘2,

 �~c�x0;!! 0� �
i!

2�D‘

X
i

ni�~pi�!�: (6)

Equation (6) tells us how the concentration responds to
changes in the population of the different states of the
receptor complex, while Eq. (3) tells us how the popula-
tions respond to changes in concentration. Denoting��1 as
the matrix inverse to �, they yield

 � ~Ei�!� �
X
j

��1
ij �!��~pj�!�; (7)

 ��1
ij �!� � ��0��1

ij �!� � ninj
i!kBT
2�D‘ �c

: (8)

We see the effect of coupling to diffusion is to add a self-
energy term to the inverse susceptibility.

The fluctuation-dissipation theorem (FDT) holds that
fluctuations in occupancy of the states can be viewed as
the response to fluctuations in conjugate energies Ei, the
spectrum of which is determined by [10]

 h� ~Ei�!�� ~Ej�!
0�i � 2���!�!0�

2kBT
!

Im	��1
ij �!�
:

(9)

We define the noise power spectrum through

 h� ~Ei�!�� ~Ej�!
0�i � 2���!�!0�Nij�!�; (10)

 N ij �N �0�
ij � Aninj; (11)

where A � �kBT�2=��D‘ �c�, and N �0�
ij is the noise ob-

tained from the kinetics described by the bare susceptibil-
ity ��0�ij .

From Eq. (3) we see that a change in concentration is
equivalent to a coordinated change in the energies of all the
states,

 � ~Ei�!� � �nikBT�~c�x0;!�= �c: (12)

Thus, in general there is no single state of the receptor
complex that can be monitored to provide the optimal
readout of the concentration. However, if downstream
mechanisms have access to all the states, and construct a
readout from an appropriately weighted average of the
populations, the maximum achievable signal-to-noise ratio
at each frequency [11] is,

 SNR �!� �
X
ij

� ~Ei�!�N �1
ij �!�� ~E�j �!�: (13)

In the limit of detecting a slow change in concentration,
where we are willing to average for a time �, the total
signal-to-noise ratio is given by �SNR�!! 0�. Defining
detectability as the point where �SNR reaches unity, the
threshold for detection is
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The sum in Eq. (14) can be written as [12]

 n T �N �1 � n �
nT �N �0��1 � n

AnT �N �0��1 � n� 1
; (15)

where nT denotes the transpose of n. Thus we obtain
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��kBT�
2	nT �N �0��1 � n


: (16)

Crucially, the second term is positive: N �0� is a matrix of
noise power spectra; therefore it is positive definite (sym-
metric with all positive eigenvalues), as must be N �0��1,
nT �N �0��1 � n> 0. Thus, as in Ref. [9], the first term
gives a lower bound to the smallest detectable signal. Up to
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a factor of �, it is exactly the expression in Eq. (1), derived
by Berg and Purcell [6].

To illustrate these ideas, we invoke a specific model, the
Monod-Wyman-Changeux (MWC) model of cooperativity
[3]. This model has been widely used, first for allosteric
enzymes, then for the paradigmatic example of cooperative
oxygen binding to hemoglobin [5], and more recently for
studies of switching between rotational states of the bacte-
rial flagellar motor, denoted by T (clockwise) and R (coun-
terclockwise) [13–15]. In this model, ligands bind
independently to multiple sites, but the binding energy
depends on whether the whole complex is in the R or T
state.

The states of the system are defined by the binary
variable R=T and the number n of ligands bound to a total
of Nr sites. The free energy of the R state with n ligands
bound is

 FR�n� � FR�0� � nkBT ln�c=KR�; (17)

and similarly for the T states, where c is the ligand con-
centration as above. If the rate for ligand-binding to the R
state [i.e., for the transition �R; n� ! �R; n� 1�] is kR�c and
the rate of unbinding is kR�, then kR�=kR� � KR. If the
transition �R; n� ! �T; n� occurs at rate kf�n�, and the
reverse T ! R transition at rate kb�n�, then by detailed
balance we must have

 

kf�n�

kb�n�
�
kf�0�

kb�0�

�
KR
KT

�
n
: (18)

To complete the kinetic model we follow Ref. [14] and
assume the activation energies for the transition rates
kf;b�n� are themselves linear in n, so that

 ks�n� � ks�0��KR=KT��n; (19)

where s � �f; b� and � � ��; �� 1�, respectively; the
change in the activation energy of switching from R to T
upon binding a single ligand molecule is
�kBT� ln�KR=KT�, where � is a constant.

In this model, the probability that the motor is in the T
state with n bound ligand molecules is

 pT�n� � C�Nr; n� exp	�FT�n�=kBT
=Z; (20)

where C�Nr; n� is the binomial coefficient, Z is the parti-
tion function given by Z � ZR � ZT , and ZR;T �PNr
n�0 C�Nr; n� exp	�FR;T�n�=kBT
. The equilibrium

probability of being in the T state, obtained by summing
pT�n� over n, is

 

�p T �

�
1�

1

L

�
1� c=KR
1� c=KT

�
Nr
�
�1
; (21)

where L � exp	��FT�0� � FR�0��=kBT
. In the limit of
many sites (Nr ! 1) where binding to the T state is
much stronger than to the R state (KR  KT), pT ap-
proaches a step function dependence on concentration.

Thus, the MWC model allows for arbitrarily high sensitiv-
ity if there are enough binding sites that can cooperate.

In the (plausible) limit where the conformational tran-
sition is slow but the binding and unbinding of the ligands
is fast, the dynamics reduces to a two-state system (R and
T). We compute the transition rates as averages of kf;b�n�
over the equilibrium distribution of n given that the system
is in either the R or T state. We then couple the transitions
of this effective two-state system to diffusion of the ligand
as before, and follow the same steps [9] through the FDT to
the effective noise level for concentration measurements.
We outline the argument here and give details elsewhere.

The average rates �kf and �kb for transitions from R to T,
and T to R, respectively, obtained by averaging kf;b�n�with
respect to pR;T�n� are

 

�k s � ks�0�
�
KS � c�KR=KT�

�

KS � c

�
Nr
: (22)

where s � �f; b�, S � �R; T�, and � � ��; �� 1�, respec-
tively. Then, the dynamics of the T state population is
given by

 

dpT
dt
� �kf�1� pT� � �kbpT: (23)

For the two states, the mean number of ligands bound is
just �nR;T � NrfR;T , so that transitions from the T to R state
are associated with the release of Nr�fT � fR� molecules
into the surrounding solution. Hence the diffusion equation
analogous to Eq. (4) becomes

 

@c�x; t�
@t

� Dr2c�x; t� � ��x� x0�Nr�fT � fR�
dpT
dt

:

(24)

Solving Eq. (24) to compute the response of c to small
changes in pT follows the same steps as for Eq. (4), with
the result that in the limit !� D=‘2

 �~c�x0;!! 0� �
i!

2�D‘
Nr�fT � fR��~pT�!�: (25)

As in Eq. (6), ‘ is the effective size of the cluster.
The analysis of Eq. (23) is more subtle because the

concentration c and the thermodynamic force conjugate
to pT are hidden in the rate constants �kf;b. The conjugate
force is the free energy difference between the T and R
states, and is linked to the rate constants through detailed
balance. Thus if we imagine changing the rate constants
�kf;b by small amounts � �kf;b, we must have (see also
Ref. [9])

 

� �kf
�kf
�
� �kb
�kb
�
�F
kBT
� Nr�fT � fR�

�c
�c
; (26)

as is verified in detailed computations from Eq. (22) for �kf
and �kb, identifying F � FR�0� � FT�0�. Linearizing
Eq. (23) about the equilibrium occupancy of the T state
yields
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d�pT
dt
� �� �kf � �kb��pT � �kf�1� �pT�

�

�
�F
kBT
� Nr�fT � fR�

�c
�c

�
: (27)

To find the susceptibility of pT to its conjugate force �F
we transform Eq. (27) and substitute from Eq. (25):
 

��1�!� �
� ~F�!�
�~pT�!�

�
kBT

�kf�1� �pT�
� �kf � �kb�

� i!
�

kBT
�kf�1� �pT�

�
kBTN

2
r �fT � fR�

2

2�D‘ �c

�
: (28)

The FDT, as in Eq. (9) but now with the more standard sign
convention (see [10]), tells us that

 h� ~F�!�� ~F�!0�i��2���!�!0�
2kBT
!

Im	��1�!�
:

(29)

Fractional changes in concentration are equivalent to
changes in free energy through

 

�c
�c
�

1

Nr�fT � fR�
�F
kBT

; (30)

so if we can compute the noise in �F we can compute the
equivalent noise in the concentration, as before,

 

�
�c
�c

�
2
�

1

�D‘ �c�
�

2

N2
r �fT � fR�2

1
�kf��1� �pT�

: (31)

This is exactly the result of our general analysis, where
now the second term in Eq. (16) is explicit. Notably, as the
number of cooperative sites Nr becomes large, this term
diminishes, and the physical limit set by diffusion alone
becomes dominant [16].

To summarize, we have found that the physical limit to
biochemical signaling first suggested by Berg and Purcell
is surprisingly general. Even allowing for arbitrarily com-
plex internal states and multiple ligand-binding sites, the
equivalent noise level against which concentration changes
must be detected has two terms: the Berg-Purcell limit plus
a positive contribution from the details of the chemical
kinetics. A cooperatively interacting receptor cluster, like a
noninteracting cluster [9], is ultimately limited in its mea-
surement of the ligand concentration by the diffusive
counting noise inherent to a device of size ‘, given by
the effective cluster size. Cooperative interactions serve to
suppress the second term, and perhaps this is crucial in
allowing any real biological system to approach the physi-
cal limit.
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