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Carbon Nanotube Electron Windmills: A Novel Design for Nanomotors
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We propose a new drive mechanism for carbon nanotube (CNT) motors, based upon the torque
generated by a flux of electrons passing through a chiral nanotube. The structure of interest comprises a
double-walled CNT formed from, for example, an achiral outer tube encompassing a chiral inner tube.
Through a detailed analysis of electrons passing through such a “windmill,” we find that the current, due
to a potential difference applied to the outer CNT, generates sufficient torque to overcome the static and
dynamic frictional forces that exist between the inner and outer walls, thereby causing the inner tube to

rotate.
DOI: 10.1103/PhysRevLett.100.256802

The evolution from microelectronics to nanoelectronics,
as exemplified by the exponential growth in mobile com-
munications and personal computing, is paralleled by
the more recent miniaturization of mechanical devices,
which are currently undergoing a transition from com-
mercially available microelectromechanical structures
(MEMSs) to nanometer-scale nanoelectromechanical
structures (NEMSs). Whereas microfabricated motors, ac-
tuators and oscillators [1] are typically manufactured by
conventional semiconductor processing techniques, their
nanoscale counterparts are more difficult to realize.

An early example of an artificial NEMS [2,3] is based on
a telescoping structure formed from multiwalled carbon
nanotubes (MWCNTs). These structures possess novel
electrical properties [4] and extremely low intershell fric-
tion [5]. The latter discovery led to the idea of carbon
nanotube (CNT) nanomechanical oscillators [5-9] with
gigahertz operation frequencies, which is beyond the reach
of MEMS oscillators [10]. The ultralow intershell friction
in MWCNTs also underpins recently developed CNT-
based nanomotors [11,12], which involve a MWCNT
whose outer shell is clamped to two metallic anchor pads
and whose inner shell (or shells) is free to rotate or oscil-
late. A metallic plate is deposited on the mobile shell and
movement is induced via an electrostatic interaction be-
tween the metallic plate and external gates.

The aim of the present Letter is to propose a new dc
drive mechanism for CNT-based motors [13]. For all such
nanomechanical devices analyzed to date, the static forces
can roughly be classified as elastic, electrostatic, friction
and van der Waals. In this Letter, we propose a new force
which has so far been ignored in the NEMS literature. This
force provides a new ‘‘electron-turbine’’ drive mechanism
for CNT-based nanomotors and obviates the need for me-
tallic plates and gates in the nanomotor of [11,12]. To
understand the origin of this force, consider the structure
shown in Fig. 1(a), which comprises a double-walled CNT,
formed from an achiral (18,0) outer tube clamped to
external electrodes and a chiral (6,4) inner tube. As in
[11,12], the central region of the outer tube has been
removed to expose the free-to-rotate, chiral inner tube.
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PACS numbers: 85.65.+h, 61.46.Fg, 68.35.Af, 73.63.Fg

The proposed force arises when a dc voltage is applied
between the external electrodes, which produces a “wind”
of electrons, for example, from left to right. The incident
electron flux (from the achiral CNT) possesses zero angu-
lar momentum, whereas after interacting with the chiral
nanotube, the outgoing current carries a finite angular
momentum. By Newton’s third law, this flux of angular
momentum produces a tangential force (and an associated
torque) on the inner nanotube, causing it to rotate.

Figure 1(b) shows an even simpler version of this motor,
which we refer to as a CNT ““drill,” which comprises an
achiral outer tube clamped to an external electrode and a
free-to-rotate, chiral inner tube contacted to a mercury bath
as in [14].

The main question is whether this new force is sufficient
to overcome frictional forces between the inner and outer
tube. The central result of our calculations is that, for
moderate voltages, the tangential force produced by the
electron wind can significantly exceed the frictional forces;
therefore, electron windmills provide a viable alternative to
electrostatic nanomotors realized to date. This result is
illustrated in Fig. 2(a), which shows the tangential force
(Fmotor) @s a function of the applied voltage (¢) exerted on
the (18,0)@(6,4) drill of Fig. 1(b), where @ indicates
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FIG. 1 (color online). The proposed nanomotor (a) and
nanodrill (b) formed from an inner (6, 4) CNT (red) and an outer
(18,0) CNT (light gray). The nanomotor is attached to gold
electrodes, which act as reservoirs of electrons, whereas the
nanodrill has one end contacted to a mercury electrode.

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.100.256802

PRL 100, 256802 (2008)

PHYSICAL REVIEW LETTERS

week ending
27 JUNE 2008

= Finotor (18,0)@(6:4)

Funotor X 1071° N
(-] £ N o N & (-] [--]

0 02 04 06 08 1 12 14 16 18

¢(volts)
2 = fgtar (180)@(6,4)
— .6
2
>
=
[—] 0
]
»
= 4
2
0 0.2 04 06 038 1 1.2 14 16 18
E(eV)
1
¢ WSk B) L
06 - v ky(qE))
0.2
]
»

-0.2

-0.6

-1

0 02 04 06 08 1

E(eV)

12 14 16 18

FIG. 2 (color online). (a) The tangential force (F ) exerted
on a (18,0)@(6,4) nanodrill as a function of the voltage ¢.
(b) The black curve shows the computed tangential force per volt
Smotor(E) for the (18, 0)@(6, 4) drill, whose integral yields the
curve in Fig. 1(a), in accordance with Eq. (7). For comparison,
the red or light gray curve shows the quantity FONE) of
Eq. (12), which is proportional to the total tangential velocity
carried by all right-moving channels of energy E in an infinite
(6,4) chiral CNT. (c) A “fan diagram” showing the tangential
velocities v§6’4)(q, ky(q, E))/v carried by right-moving chan-
nels g (red or light gray) and left-moving channels ¢’ (blue or
dark gray) of an infinite (6, 4) chiral CNT. The red or light gray
curves sum to yield the red or light gray curve of (b), in
accordance with Eq. (10).

“inside.” In this example, the number of overlap atoms
(N4oms) between the inner (6, 4) and the outer (18, 0) CNT
is approximately 4000 and since the static friction is
Fexp = 10715 N/atom [15], the total static friction is F, =~
4 X 107'2, Figure 2(a) shows that when ¢ is approxi-
mately 0.4 volts, F . €Xceeds F,. by almost 3 orders of
magnitude.

To obtain the result of Fig. 2(a), we note that the mo-
mentum of an electron wave packet incident along a semi-
infinite CNT is equal to the mass of the electron multiplied
by its group velocity. To quantify the tangential momen-
tum, consider an (n, m) CNT defined by a chiral vector
C, =na; + ma, and a translation vector T, =

tia; + t,a,, where (0 =m =< n), a;, a, are the lattice
vectors, 1, = 2m + n)/d, and t, = —(2n + m)/d, with
d, the greatest common divisor of 2n + m, 2m + n).

For electrons with group velocity v, we define the lon-
gitudinal component of the velocity to be v, = v - T, and
the transverse to be v, = v - Cy,. The quantized component
k, of the wave vector k = (k,, k,) parallel to the chiral
vector satisfies

_2mq

ki
L

(@ =1,.... Niex)

where Nyo, = 2L?/(a?d,) is the number of hexagons in the
CNT unit cell with L the length of the chiral vector and a
the length of the lattice vector. For a given value of the
quantized wave vector ki, the energy of an electron is a
function E(k%, k) of the continuous longitudinal compo-
nent k, of the wave vector, which satisfies

T
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For example, within a minimal tight-binding model of 7
bonding in graphene, with a parameterized tight-binding
transfer integral 7y, the 1D dispersion curves for such a
CNT are given by

3
E(k,, k,) = iy(l + 4cos§ (kyacos® — kyasing)
1
X cosy (kyasin® + kyacos)

51 ) 172
+ 4cos E(kxa sinf + kya cosH)) , (1)

where tand = (n — m)/</3(n + m) (i.e., 6 is 7/6 minus
the chiral angle). For all electrons of energy E moving
along a 1D channel of quantum number ¢, the equation
E(k{, ky) = E can be solved to yield two E-dependent
values of k,, which we denote by ky(q, E) and
—k,(q', E), corresponding to positive (i.e., right-moving)
and negative (i.e., left-moving) longitudinal group veloc-
ities  v,(q,k,) and wv(q’, —k,) respectively, where
vy(q, ky) = (1/h)IE(kY, k,)/dk,. The corresponding tan-
gential group velocities are v,(q, k,) and v,(q’, —k,) re-
spectively, where v,(q, k,) = (1/h)0E(kI, k,)/dk?.

For an (n/, m')@(n, m) structure of the kind shown in
Fig. 1, which is derived from a chiral (n, m) CNT inside an
achiral (n’, m") CNT, a right-moving electron of energy E
incident along channel ¢, with tangential group velocity
v.(q, ky(g, E)) will either be reflected into left-moving
channels ¢’ of the left CNT with tangential group velocities
v.(q', —ky(¢', E)) and reflection probability R,,(E) or it
will be transmitted into right-moving channels ¢’ of the
right CNT with tangential group velocities v, (¢, k,(¢’, E))
and transmission probability T, (E).
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The flux of tangential momentum into the motor is

Prnotor :% fj; dE[vin(E) = Vou(E) L f1er (E) _fright(E)]’
2)

where fieq(E) and fon(E) are Fermi distributions for
incoming channels from the left and right reservoirs and

VUin = va(% ky(qr E)) (3)
q

Furthermore,

voul(E) = vR(E) + UT(E)J (4)
where
UR(E) = Z[Ux(q/: _ky(qlr E))quq(E)], (5)
q'q
UT(E) = Z[vx(q/’ ky(q/r E))Tq’q(E)] (6)
q'q

In these equations, g sums over incoming channels and ¢’
sums over outgoing channels. Equation (2) is valid even if
both CNTs are chiral. By symmetry, for the case consid-
ered here, where the outer CNT is achiral, v;,(E) = 0. It
can also be demonstrated that for the case of total reflec-
tion, where T,,(E) =0 (for all ¢', ¢), Eq. (4) yields
vout(E) = 0.

By Newton’s third law, the net tangential force exerted
on the inner chiral CNT is Fo0r = — Pmotor and therefore

o dE
Frnotor = f_oo ?fmotor(E)[fleft(E) - fright(E)]: (7

where foor(E) is the tangential force per volt due to
electrons of energy E, given by

fmotor(E) = fO[vout(E) - vin(E)]/vFr (8)
with f the characteristic tangential force per volt, given by

fo =2 0y, ©)

For metallic CNTs, vy = 9.35 X 10° m/s and therefore
fo =4.12X 1079 N/V. (The corresponding force at 1 V
is Fy =4.12 X 1079 N and is the natural unit of force
introduced above.) We note that if e¢ is the chemical
potential difference between the reservoirs and if e¢ is
small compared with kT, then [fien(E) — fign(E)] =
ed[—adf(E)/IE], which reduces to epS(E — E) in the
limit k3T — 0. On the other hand, if kg7 is small com-
pared with e, then [fie(E) — fiign(E)] is of order unity
within an energy interval of order e¢ and zero outside this
interval. In what follows, for the purpose of proving the
viability of the proposed motor, we shall focus on the latter
regime.

For an (n/, m')@(n, m) motor with an achiral (n/, m')
outer CNT, an upper bound for the tangential force is
obtained by setting v;, = 0 and replacing v, by the
maximum possible tangential velocity carried by right-

moving channels of an infinite (r, m) chiral CNT. In units
of v this is given by

vg)l’m)(E) = ngfn'm)(q’ ky(q, E)/vr, (10)
q

where v""(q, k,(q, E))/vp is the dimensionless tangen-

tial group velocity of a right-moving channel ¢ of an
infinite (n, m) CNT.

The flux of tangential momentum carried by these elec-
trons yields an upper bound on the tangential force of the
corresponding motor, given by

e¢/2 dE
remed) = [ Cpmw,
—edp/2 €
where f m(E) is the flux of tangential momentum per volt

due to electrons of energy E, given by
w"(E) = fovs™ (E). (12)

The latter quantity is shown as the red curve in Fig. 2(b),
whereas the black curve shows the tangential force per volt
obtained by computing all scattering coefficients and eval-
uating Eq. (8).

To understand the origin of the oscillations in fg?’m)(E),
the red curves in Fig. 2(c) show the values of
v§6’4)(q, ky(g, E))/ v for right-moving channels. (For com-
parison, the blue curves show v§6’4)(q’, k,(q', E))/vp for
left-moving channels.) In Eq. (10), the label g sums over
N(E) open channels of the CNT, where N(E) is an integer
given by N(E) =3 . Clearly N(E) is a discontinuous
function of E, which changes by an integer whenever
new channels open or close. As shown by the red curves
in Fig. 2(c), right-moving channels open or close in pairs
and just as a pair of channels open, their tangential veloc-
ities cancel. Consequently, vfg"‘)(E) is a continuous func-
tion of E, with a discontinuous first derivative.

The red (light gray) curve of Fig. 2(b) shows that the
tangential velocity of right-moving electrons in an infinite
chiral CNT is an oscillatory function of E, whose slope
changes whenever new channels open. The black curve of
Fig. 2(b) shows that these oscillations are also present in
Fmotor(E). To compute fporor(E), we used a parameterized
single-state 77 orbital Hamiltonian, based on a global fit to
density functional results for graphite, diamond and C, as a
function of the lattice parameter [16]. This gives good
agreement with the single 7 orbital interaction between
two carbon atoms separated by d = 3.40 A predicted by
[17] of 0.35 eV and is appropriate to our system, where the
interwall separation is d = 3.65 A. A recursive Greens
function formalism was then used to evaluate the trans-
mission matrix t, describing the scattering of electrons of
energy E from one end of the semi-infinite nanotube to the
other [18].

The tangential force shown in Fig. 2(a) is obtained by
integrating the black curve of Fig. 2(b) over the applied
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voltage, in accordance with Eq. (7). The result depends
slightly on the orientation of the inner tube relative to the
outer tube; therefore, the results shown in Fig. 2(a) is
averaged over all orientations. We have carried out calcu-
lations which demonstrate the viabilities of CNT motors
and drills with a wide variety of chiralities and intertube
couplings. The result is rather robust and does not depend
strongly on the number of overlap atoms, provided the
electrons evolving from the outer to the inner tube do not
strongly back scatter. If the intertube coupling causes
strong back scattering, then the tangential force is reduced,
but oscillations of the form shown in Fig. 2(b) persist.
Figure 2(b) demonstrates that the tangential force vanishes
for energies below approximately 0.19 eV, since there are
no open channels in the chiral (6,4) CNT. It is interesting
to note that a voltage threshold also occurs when the
achiral outer CNT is chosen to be an armchair tube, be-
cause the two channels closest to the Fermi energy possess
vanishing tangential velocities and therefore electrons in
these channels cannot exert a tangential force. In all cases,
the voltage threshold can be removed by tuning the Fermi
energy to coincide with open channels of the outer CNT
carrying a finite tangential velocity.

As well as comparing the tangential force of Fig. 2 with
the static friction, it is also of interest to ask if Fp,q,,, can
overcome the dynamical friction between the two CNTs
[19-21]. For a spinning CNT with carbon atoms of mass
m, moving with a tangential velocity v, the dynamical
friction force per carbon atom is [21] m,v,./7, where T =
0.5 ns. Equating the dynamical friction to F ., yields a
maximum tangential velocity of v,, = 10’a/N, ms™!,
where N, is the number of overlap atoms and a =
Fro0r/ Fo» Wwhere Fy = 4.1 X 10710 N is a natural unit of
force (see below). This means that even for moderate volt-
ages, the electron wind is sufficient to drive the inner tube
to the mechanical breakdown velocity (=8 X 10° ms™!)
[21].

This demonstration, that an ‘“‘electron wind”’ can cause a
chiral “CNT windmill”’ to rotate, could lead to a range of
applications [13]. By analogy with the occurrence of spin
torques in magnetic point contacts and tunnel junctions
[22,23], which have applications in nanoscale magnetic
memory devices, one expects CNT windmills to have
nanoscale memory applications. For example, a voltage
pulse through a CNT motor would cause the inner element
to rotate by a predetermined angle, which may be utilized
in a switch or memory element. A rotating chiral CNT in
contact with a reservoir of atoms or molecules could act as
a nanofluidic pump. For the future, it will be of interest to
examine other drive mechanisms for chiral CNT motors.
For example, if the electrical contacts in Fig. 1 are replaced
by reservoirs of atoms or molecules and a pressure differ-
ence is applied to drive the atoms or molecules from left to
right, then the resulting transfer of angular momentum may
also be sufficient to drive the motor, as could a flux of
phonons resulting from a temperature difference between
the ends of the device.

Finally, we note that other mechanisms for driving CNT
motors have been proposed based on ac fields. In the case
of [24] this involves the use of circularly polarized light,
whereas [25] involves a Brownian ratchet. The force pro-
duced by the former is 2—3 orders of magnitude smaller
than the drive mechanism discussed in the present Letter,
while the latter requires a high-frequency drive voltage. We
also note that Ref. [26] proposes similar rotation of helical
molecules by passing electric current. In the latter paper
the rotation is caused by the electron’s acceleration in the
helical nanowire.
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