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In this Letter, the linear stability of the resistive wall modes (RWMs) in toroidal geometry for a reversed
field pinch (RFP) plasma is studied. Three computational models are used: the cylindrical code ETAW, the
toroidal MHD code MARS-F, and the CARMA code, able to take fully into account the effects of a three-
dimensional conducting structure which mimics the real shell geometry of a reversed field pinch
experimental device. The computed mode growth rates generally agree with experimental data. The
toroidal effects and the three-dimensional features of the shell, like gaps, allow a novel interpretation of
the RWM spectrum in RFP’s and remove its degeneracy. This shows the importance of making accurate
modeling of conductors for the RWM predictions also in future devices such as ITER.
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Introduction.—Resistive Wall Modes (RWMs) are kink-
like instabilities which grow on the time scale of magnetic
field penetration through the metal structures surrounding a
toroidal fusion plasma. This happens when these structures
are close enough to the plasma, so that an ideally conduc-
tive wall would have stabilized the kink mode [1]. These
branches of magneto-hydro-dynamic (MHD) modes have
received, in recent years, an increasing attention in fusion
plasma physics research, in view of the steady state opera-
tions of future thermonuclear devices such as the
International Tokamak Experimental Reactor (ITER). In
ITER advanced scenarios, in particular, the RWM insta-
bility will set the most stringent limit to the plasma per-
formance in terms of the stored internal kinetic energy and
hence to its operational space [2]. For this reason, it is of
fundamental importance to make reliable predictions about
the RWM stability boundary and the so-called beta limits.
However, some open issues still remain in RWM modeling.
One is the estimate of the stabilization effects due to
plasma rotation and dissipation [3]. Another is the evalu-
ation of the effects of the complex three-dimensional con-
ducting structures surrounding the plasma.

We study RWM stability in a reversed field pinch (RFP).
Tokamaks and RFP devices share many common features
of the RWM physics and its active control. In RFPs, how-
ever, RWMs are nonresonant current driven instabilities
[4], generally not affected by dissipation and flow. This
removes one of the modeling uncertainties mentioned
above. As a consequence, the RWMs in RFPs are very
reproducible and their growth rates, given a fixed geometry
of the passive structure, is well determined by standard
single-fluid MHD. For this reason, RFPs are a very inter-
esting test bed for numerical MHD codes calculating the
RWDMs stability and control. Such codes, once validated,
can be used to make predictions and estimations on other
devices like tokamaks.
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In this paper we focus on the RFX-mod experiment [5]
which has a major radius R of 2 m, a plasma minor radius a
of 0.459 m and a stabilizing copper shell at minor radius
0.513 m, of width 3 mm and a vertical field penetration
time around 55 ms. This shell is made of four pieces, two of
the gaps are left insulated, while the other two are short
circuited as reported in the following. Moreover, an over-
lapping region is present corresponding to the insulated
poloidal gap. Outside this shell there is another conducting
structure, for mechanical purposes, on which a set of 192
saddle coils for feedback control are mounted, 4 at each of
48 equally spaced toroidal locations. Inside the shell a
vacuum vessel, with short penetration time of 1-2 ms, is
also present. Because of the complex geometry of conduc-
tors surrounding the plasma, in addition to the ETAW cy-
lindrical code [6] and to the MARS-F toroidal code with
axisymmetric walls [7], it has been necessary to apply a
new computational tool, called CARMA [8,9], able to rig-
orously take into account the three-dimensional details of
the conducting structures in the solution of the plasma
stability problem.

We report a comparison of the RWM growth rates
predicted by the various computational models and experi-
mental evidence, showing a good agreement and suggest-
ing motivations for possible discrepancies between
cylindrical theory and experiments. Indeed, toroidal and
3D effects allow a new understanding of RWM spectrum in
RFP’s. In particular, three-dimensional electromagnetic
effects may play a significant role in RWM stability. This
has a direct implication to ITER predictions.

Modeling tools.—We make a Fourier decomposition of
all quantities in the toroidal and poloidal direction; let us
call m and n the poloidal and the toroidal mode numbers.

The cylindrical code ETAW has been extensively used for
RFP calculations [10]. The code solves the linear cylindri-
cal resistive incompressible MHD equations, using a spec-
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tral formulation and a matrix shooting eigenvalue scheme.
The problem is solved in presence of up to two resistive
walls, where thin shell boundary conditions are specified.
The plasma model is solved inside the first wall and the
solution is then matched to the external solution of the
vacuum cylindrical Laplace equation, analytically known
in terms of modified Bessel Functions.

MARS-F is a stability code that solves single-fluid MHD
equations [7]. The code also includes a vacuum region, thin
conducting shells, and feedback coils. Other features of the
code, such as sheared toroidal plasma rotation, sound wave
or kinetic damping terms, are not included in the simula-
tions in this Letter. The major limitation of the code is that
it can only treat conducting structures (walls or coils) that
are axisymmetric along the major axis of the torus. This is
because the code assumes a exp(jn¢) variation of the eddy
currents in these conductors along the toroidal angle ¢.

CARMA is a recently developed code [8,9], able to ana-
lyze RWMs taking rigorously into account the three-
dimensional features of the conducting structures sur-
rounding the plasma. For a given toroidal mode number
n, the linearized single-fluid MHD equations are solved
inside a suitable coupling surface S, in between the plasma
and the conducting structures. Neglecting plasma mass
(which is an excellent approximation on typical RWM
time scales), the instantaneous plasma response matrix to
magnetic field perturbations on § are computed, using
MARS-E. Such plasma response matrix is coupled to a 3D
volumetric integral formulation of the eddy currents prob-
lem, which describes the conducting structures by means
of a three-dimensional finite elements mesh. The CARMA
code has been successfully benchmarked with MARS-F and
applied to ITER [8,9].

Numerical and experimental results.—Usually, the
problem of finding the RWM growth rates is studied in
RFX-mod in the cylidrical limit since this has been shown
[6] to be a good approximation, due to the low safety factor
g which characterizes the RFPs. This is a major difference
with respect to the tokamak case, where the RWMs are
strongly ballooning in the outboard torus region, due to the
unfavorable curvature and high pressure. In addition, being
nonresonant, the RWM modes in RFPs are generally not
influenced by the plasma sub-Alfvenic flow [11]. This
greatly simplifies the stability analysis and the comparison
with the experiments.

In RFPs the spectrum of unstable Fourier modes is
dominated by the m = 1 poloidal harmonic in a wide range
of n’s values. Indeed, in the cylindrical limit, it is possible
to consider each (m, n) mode as evolving separately. This
leads to an assumption that the (1, n) mode may have a
different growth rate with respect to the (—1, n) mode
(which is the same as the (1, —n) mode)—one of the
two can even be stable. In the present context, toroidal
coupling does not allow us to make this assumption: for a
given n value, only “global” modes can occur, involving

theoretically all m harmonics (although a few of them may
be dominant). In cases where both (1, n) and (1, —n)
cylindrical modes are unstable, they merge to two (or
more, for reasons discussed in the following) unstable
toroidal modes with the same n number but generally
different growth rates. Being toroidal effects expected to
be small, the growth rates of these merged modes are close
to those computed in the cylindrical limit.

First, we assume an axisymmetric shell—although de-
scribed in CARMA by a three-dimensional finite elements
mesh. This allows a direct comparison of the results of the
three previously mentioned codes. The equilibrium profile
is characterized by the values F = —0.136 and © = 1.49,
where O (resp. F) is the ratio between the poloidal (resp.
toroidal) field at the plasma boundary and the section
averaged toroidal field, and has been reconstructed follow-
ing the parametrization of the a — 6, model, widely used
also to describe experimental data, in the zero pressure
limit [6].

Table I reports the growth rates of the unstable RWMs as
predicted by the three codes. The agreement is satisfactory;
the small discrepancies are due to the different numerical
treatment of conducting and vacuum regions in CARMA and
MARS-F. For n = 2 and n = 3 two unstable global modes
are found by MARS-F and CARMA, corresponding to the
m=1 and m = —1 modes of the cylindrical limit.
CARMA uses the plasma response matrices computed for
n =1...6, both one at a time (monomodal response) and
all together (multimodal response). The eigenvalues of the
monomodal and of the multimodal response are identical,
as expected with an axisymmetric wall. For each unstable
eigenvalue of MARS-F and of ETAW, CARMA finds in fact a
pair of coinciding unstable eigenvalues; these correspond
to two eigenvectors which are identical, except a shift of
7/(2n) in the toroidal direction. The two can be identified
as +n and —n modes in MARS-F, which are identical with
an axisymmetric equilibrium and wall geometry.

Figure 1 reports a comparison of the results predicted by
MARS-F (close to the other codes with an axisymmetric
shell) with experimental data of RFX-mod, as a function of
the profile parameter F. The ® value is fixed at 1.49 for all
calculations. For this range of F, the experimental ® value
varies between 1.44 and 1.49. When multiple unstable

TABLE I. Growth rates with a 2D shell (results in s™!).
n value Cylindrical MARS-F CARMA

1 <0 <0 <0

2 <0 0.434 0.368
2.45 1.81 1.94

3 1.82 2.08 1.91
1.90 2.16 2.49

4 4.09 4.04 4.27

5 6.81 6.89 7.45

6 11.8 11.7 12.9
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FIG. 1 (color online).
rates.

Comparison with experimental growth

modes are present, only the highest growth rate is reported.
Evidently, the agreement is qualitatively and quantitatively
satisfactory, although a slight underestimation can be no-
ticed, especially for the n = 5 mode. In addition, forn = 6
around F = —0.13, the experimental measurements give a
growth rate of about 20 s, which does not agree with the
2D wall simulation results.

We have also performed some computations with
CARMA using a nonaxisymmetric shell, in which the gaps
have been introduced. No overlapping of the shell at the
gaps is taken into account. One of the poloidal gaps and the
inner toroidal gap have been kept insulated, as it is done in
RFX-mod (see Fig. 2). The other two gaps are short
circuited on the device: the poloidal gap is welded, while
the outer toroidal gap is short circuited by means of a
number of copper plates [12]. Table II reports the growth
rates when assuming that such short circuits are perfect, for

toroidal gap

poloidal gap

FIG. 2 (color online). Gaps location and current density dis-
tribution corresponding to one of the n = 3 unstable modes.

the same equilibrium of Table I. The shell current density
distribution of one of the unstable n = 3 modes close to the
gaps is reported in Fig. 2.

Comparing such results with those of Table I, we notice
that the 3D effect of the gaps can lead to a sometimes
significant increase of the growth rate. It should also be
noted that by breaking the symmetry of the wall with the
gaps, we remove the degeneracy of the spectrum, giving
rise to pairs of eigenvalues which are close each to the
other, but not coinciding any more.

The two pairs of unstable eigenvalues, reported in
Table II for n = 3, are the counterpart, in toroidal 3D
geometry, of the two pairs of unstable eigenvalues found
for this equilibrium in the cylindrical limit: (1, n), (—1, —n)
and (1, —n), (—1, n). Similar considerations apply to the
four unstable eigenvalues obtained for n = 2, although in
this case the two marginally unstable modes are in fact
stable in the cylindrical limit.

In addition, we observe that the eigenvalues of the
multimodal response are not exactly coinciding with those
of the monomodal response. This is due to the fact that a
nonaxisymmetric wall may couple, even in linear MHD,
modes with different n’s [13].

Reexaming Fig. 1, we notice that such 3D effects tend to
compensate the slight underestimation that the axisymmet-
ric models give with respect to experimental values. For
instance, the n = 5 growth rate increases of about 40%, up
to around 10 s™!, much closer to experimental values.
However, it should be noted that the introduction of addi-
tional conducting structures (vessel and mechanical struc-
tures, neglected in the present study) could slow down
again the estimated growth rate. This consideration applies
obviously also to the cylindrical and axisymmetric compu-
tations reported above.

TABLE II. Growth rates predicted by CARMA with a 3D shell
with gaps (results in s~ ).

n value CARMA monomodal CARMA multimodal

1 <0 <0

2 0.447 0.448
0.459 0.462
2.40 2.33
248 2.36

3 2.58 2.61
2.62 2.64
2.96 3.13
3.04 3.26

4 5.46 5.63
5.53 5.78

5 9.62 991
9.73 10.2

6 17.0 17.6

17.2 18.2
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FIG. 3 (color online). Growth rate of the n = 6 mode pre-
dicted by CARMA as a function of additional resistance at the
outer toroidal gap.

In order to get a deeper insight on 3D effects, the short
circuited gaps have been represented in CARMA by a con-
tact resistance, with the same technique used in [14].
Figure 3 reports the monomodal n = 6 growth rate assum-
ing that the second poloidal gap is perfectly short circuited
and representing the outer toroidal gap as an increasing
contact resistance OR. The case 6R = 0 corresponds to the
results presented in Table II.

Evidently, a value R of a few u{) accounts for an
increase of the growth rate up to around 50%.
Conversely, the poloidal gap has a less important effect,
giving rise to variations of the order of 10% at most.
However, in RFX-mod the contact resistance of the toroi-
dal gap has been estimated as being <0.5 w2 [15], so this
effect can possibly justify a further increase of the growth
rate up to around 20 s~ !. This value is in better agreement
with experiments than purely axisymmetric estimates.

Conclusions and perspective.—Resistive wall modes
occurring in RFX-mod have been studied with a number
of computational tools. Specifically, the application of the
MARS-F and CARMA codes allows the analysis of RWMs
including toroidal effects, multimodal plasma evolution
and three-dimensional features of the conducting struc-
tures surrounding the plasma. In particular, the inclusion
of toroidal effects allows a new understanding of RWM
spectrum of RFP devices, and 3D effects are shown to
remove the spectrum degeneracy and to cause multimodal

coupling even in the linear case. All these features allow a
successful prediction of experimental growth rates, that are
often substantially underestimated when such effects are
not taken into account. This comparison was made possible
by the fact the RWMs in RFPs are highly reproducible,
being nonresonant current driven modes, while it would be
much harder to achieve on other devices.

Several points deserve further attention. First of all, a
more realistic description of the electromagnetic structures
should be given, including features neglected in this Letter,
like for instance the vessel and the mechanical structure,
which are expected to play (especially the second) a sta-
bilizing role. Second, a thorough comparison with experi-
mental data will be done, trying to test the sensitivity of the
stability results on variations of the plasma equilibrium.
Indeed, it has been already shown [16] that the growth rate
of the first on-axis nonresonant mode can be affected by
uncertainties of the safety factor profile near the magnetic
axis.
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