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Because of long chemical equilibration times for standard hadronic reactions in a hadron gas in
relativistic heavy ion collisions, it was suggested that hadrons are born into equilibrium after the quark
gluon plasma is formed. We develop a dynamical scheme, using master equations, in which Hagedorn
states contribute to fast chemical equilibration times of baryons and kaons, just below the critical
temperature, estimates of which are derived analytically. The hadrons quickly equilibrate for an initial
over- or underpopulation of Hagedorn states. Our particle ratios compared to BNL Relativistic Heavy Ion
Collider show a close match.
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(Anti-)strangeness enhancement was first observed at
CERN-SPS energies by comparing antihyperons, multi-
strange baryons, and kaons to pp-data. It was considered
a signature for quark gluon plasma (QGP) because, using
binary strangeness production and exchange reactions,
chemical equilibrium could not be reached within the
hadron gas phase [1]. It was then proposed that there exists
a strong hint for QGP at SPS because strange quarks can be
produced more abundantly by gluon fusion, which would
account for strangeness enhancement following hadroniza-
tion and rescattering of strange quarks. Later, multime-
sonic reactions were used to explain secondary production
of antiprotons and antihyperons [2,3]. At SPS, they give a
typical chemical equilibration time � �Y � 1� 3 fm

c using an
annihilation cross section of �� �Y � �� �p � 50 mb and a
baryon density of �B � �0 to 2�0, which is typical for
SPS. Therefore, the time scale is short enough to account
for chemical equilibration within a cooling hadronic fire-
ball at SPS.

A problem arises when the same multimesonic reactions
were employed in the hadron gas phase at RHIC tempera-
tures where experiments show that the particle abundances
reach chemical equilibration close to the phase transition
[4]. At RHIC at T � 170 MeV, where � � 30 mb and
�eq
B � �eq

�B � 0:04 fm�3, the equilibrium rate for (anti-
)baryon production is � � 10 fm

c , which is considerably
longer than the fireball’s lifetime in the hadronic stage of
� < 5 fm

c . Moreover, � � 10 fm
c was also obtained in

Ref. [5] using a fluctuation-dissipation theorem, and a
significant deviation was found in the population number
of various (anti-)baryons from experimental data in the 5%
most central Au-Au collisions [6]. These discrepancies
suggest that hadrons are ‘‘born’’ into equilibrium; i.e.,
the system is already in a chemically frozen out state at
the end of the phase transition [7,8].

In order to circumvent such long time scales, it was
suggested that near Tc there exists an extra large particle
density overpopulated with pions and kaons, which drive

the baryons or antibaryons into equilibrium [9]. But it is
not clear how this overpopulation should appear, and how
the subsequent population of (anti-)baryons would follow.
Moreover, the overpopulated (anti-)baryons do not later
disappear [10]. Therefore, it was conjectured that
Hagedorn resonances (heavy resonances near Tc with an
exponential mass spectrum) could account for the extra
(anti-)baryons [10]. Baryon-antibaryon [10,11] and kaon-
antikaon production develop according to

 n�$HS$n0��B �B; n�$HS$n0��K �K; (1)

which provide an efficient method for producing baryons
and kaons because of the large decay widths of the
Hagedorn states. In Eq. (1), n and n0, which can vary, are
the number of pions for the decays HS$ n� and HS$
n0�� B �B (or K �K), respectively. Since Hagedorn reso-
nances are highly unstable, the phase space for multipar-
ticle decays drastically increases when the mass is in-
creased. Therefore, the resonances catalyze rapid equili-
bration of baryons and kaons near Tc where the Hagedorn
states show up. Here, we use a Bjorken expansion within a
cooling fireball in order to see at which temperature the
chemical equilibrium values are reached or maintained. In
this Letter, we also briefly discuss an analytical solution of
the chemical equilibration time, which is valid at a constant
temperature near Tc. Moreover, our numerical results for
the baryon-antibaryon pairs and kaon-anitkaon pairs sug-
gest that the hadrons can, indeed, be born out of
equilibrium.

We use a truncated Hagedorn mass spectrum [12]

 g�m� �
Z M

M0

A

�m2 � �m0�
2��5=4�

e�m=TH�dm (2)

where the Hagedorn temperature is set to TH � 180 MeV,
which lies within the present range of Lattice QCD pre-
dictions [13], the normalization factor is A�0:5 MeV�3=2�,
andm0 � 0:5 GeV. We consider only mesonic, nonstrange
resonances and discretize the spectrum into mass bins of
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100 MeV that range from the mass M0 � 2 GeV to M �
7 GeV.

The abundances’ evolution of the Hagedorn states,
pions, and baryon-antibaryon pairs due to the reactions in
Eq. (1) are described by the following rate equations
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(3)

where the fugacity is � � N
Neq ,N is the total number of each

particle, and its respective equilibrium value is Neq. The
summation over i represents the ith Hagedorn resonance
bin. The structure of the rate equations for the kaon-
antikaon pairs is the same as in Eq. (3); however, K �K is
substituted for B �B.

The branching ratios for HS$ n� are described by a
Gaussian distribution Bi;n �

1
�i
�����
2�
p e���n�hnii�

2=2�2
i � where

hnii � 0:9� 1:2 mi
mp

is the average pion number each
Hagedorn state decays into, found in a microcanonical
model [14], �2

i � �0:5
mi
mp
�2 is the chosen width of the

distribution, and n 	 2 is the cutoff for the pion number.
Moreover, the branching ratios are normalized such thatP
1
n�2 Bi;n � 1, which gives hnii � 3 to 9 and �2

i � 0:8 to
11. The total decay width, �i � 0:15mi � 58 MeV, which
ranges from �i � 250 to 1000 MeV, was found using the
mass and decay widths in [15] and fitting them linearly
similarly to what was done in Ref. [16]. The decay widths
for the baryon-antibaryon decay are �i;B �B � hBi�i and
�i;� � �i � �i;B �B. The average baryon number hBi per
unit decay of Hagedorn resonances within a microcanon-
ical model ranges from 0.06 to 0.4, so �i;B �B � 15 to
400 MeV [10]. We use only the average values in Eq. (1)
so that hni;bi � hni;ki � 2 to 4 [10,14] is used for both the
baryons and kaons. For the kaons, �i;K �K � hKi�i where
hKi � 0:4 to 0.5 [10,14]. Thus, heavier resonances equili-
brate more quickly because of large decay widths.

Using a Bjorken expansion, we find a relationship be-
tween the temperature and the time, T�t�, for which the
total entropy is held constant

 const � s�T�V�t� �
S�
N�

Z dN�
dy

dy (4)

where
R dN�

dy dy � 874 from Ref. [17] for the 5% most
central collisions within one unit of rapidity and the en-
tropy per pion S�=N� � 5:5 is larger than that for a gas of
massless pions [18]. The volume [3] is

 Veff�t	 t0���ct�r0�t0��v0�t� t0��
a0

2
�t� t0�2�2 (5)

where the initial radius is r0�t0� � 7:1 fm. Our chosen
average transversal velocity is v0 � 0:5c with the corre-
sponding acceleration a0 � 0:025.

The equilibrium values of pions,Neq
� , shown in Fig. 1 are

found using a statistical model [19] for the density, and the
volume is found from Eq. (5) at the appropriate time
according to Eq. (4).

Here, we consider both the direct pions and the indirect
pions, which come from resonances such as �, ! etc., and
both the direct and indirect kaons. In Fig. 1, we see thatNeq

�

increases with decreasing temperature. This occurs be-
cause the Hagedorn states dominate the entropy at high
temperatures, which affects Neq

� due to the entropy con-
straint in Eq. (4). Therefore, we must consider the number
of ‘‘effective pions’’ in the system, i.e., the total number of
pions plus the potential number of pions from the
Hagedorn resonances, defined as

 

~N�;K �K � N� �
X
i

Ni

�
�i;�
�i
hnii �

�i;K �K

�i
hni;ki

�

~N�;B �B � N� �
X
i

Ni

�
�i;�
�i
hnii �

�i;B �B

�i
hni;bi

� (6)

for the kaons and baryons, respectively. In both cases,
~Neq
� remain roughly constant throughout the Bjorken ex-

pansion. Additionally, throughout this Letter, our initial
conditions are the various fugacities � 
 ���t0�, �i

�i�t0�, and�
�B �B�t0� or� 
 �K �K�t0�, which are chosen
by holding the contribution to the total entropy from the
Hagedorn states and pions constant, i.e., sHad�T0;��V�t0��
sHS�T0;�i�V�t0��sHad�HS�T0�V�t0��const.

The initial estimate for the Hagedorn state equilibration
time is �i 
 1=�i. In order to estimate the chemical equili-
bration time, we use Eq. (3) in a static environment to find
the equilibration time to be in the general ballpark [3,10] of
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FIG. 1 (color online). Comparison of the total equilibrium
number of pions Neq

� , Hagedorn states
P
iN

eq
i , and effective

pions ~Neq
�;B �B and ~Neq

�;K �K as defined in Eq. (6).
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Neq
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i �i;B �BN
eq
i

� 0:2� 0:7
fm

c

�K �K 

Neq
K �KP

i �i;K �KN
eq
i

� 0:1� 0:3
fm

c

(7)

between T � 180 to 170 MeV. These time scales are only
precise when the pions and Hagedorn states are held in
equilibrium [20]. In reality, the chemical equilibration
times are more complicated due to nonlinear effects, and
the evolution of the equilibration must be divided into
separate stages for a sufficient analysis.

To find time scale estimates, we consider the more
simplified case near Tc excluding the baryons and kaons,
i.e., Eq. (3) without the baryonic terms. The evolution of
the rate equations can be divided into three stages as shown
in Table I and derived in [20]. Initially, when the pions are
far from equilibrium (�� � 0), the Hagedorn states can be
held constant at a constant fugacity �i. Substituting �� �
0 and �i � �i into Eq. (3), we obtain �0

�. As the pions near
equilibrium, we can then use �� ! 1 to obtain ��.
Eventually, the right-hand sides of Eq. (3) become roughly
zero before full equilibration (known as quasiequilibrium),
which occurs once the lightest resonance reaches quasie-
quilibrium �2 GeV � 0:8 fm

c . To obtain �QE� , we solved
Eq. (6) without the baryonic term, assuming that �� ! 1
and that the right-hand side of the pion rate equation equals
zero. Then, the total equilibration time �tot is the sum of

�2 GeV and �QE� . Following the first time scale, �0
�, the pions

are only 5% off from equilibrium (see Figs. 2 and 3) and
after the second time scale,��, the pions are within 2% of
equilibrium. The rest of �tot takes into account nonlinear
effects. Thus, even though �tot is longer, the most signifi-
cant time scale is �0

�. The equilibration times increase
directly with Neq

� , hn2
i i and are shortened by large �i’s

and wide branching ratio distributions �i’s. Because Neq
i

decreases quickly as the system is cooled, the equilibration
time is significantly longer at lower temperatures. In Fig. 2,
our analytical fit, based on Table I [20], match our numeri-
cal results well and nicely concur with the numerical
results in Fig. 3. Additionally, the baryons take slightly
longer than predicted in Eq. (7), but still equilibrate quickly
(Fig. 3).

In Fig. 4, the baryons and kaons are shown for an
expanding system where we see that the baryons reach
chemical equilibrium by T � 165 MeV (t� t0 �
2� 3 fm

c ) and the kaons at T � 160� 140 MeV. As with

TABLE I. Equilibration times from analytical estimates where
QE is quasiequilibrium and TOT is total equilibrium.

Time Scale T � 180� 170 MeV
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FIG. 3 (color online). Same as Fig. 2 with no initial baryons
(� � 0).
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FIG. 2 (color online). Numerical and analytical results in a
static environment, i.e., fixed volume and temperature, at T �
180 MeV when �i � 1:3 and � � 0:7.
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FIG. 4 (color online). Results for an expanding fireball when
� � 1, � � 1, and � � 0. The effective number of baryons
~Neq
B �B, kaons ~Neq

K �K, and pions ~Neq
�;B �B and ~Neq
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the pions, we consider the effective number of baryons and
kaons because of the effects of Hagedorn resonance on the
entropy at high temperatures, so
 

~NB �B � NB �B �
X
i

Ni
�i;B �B

�i
;

~NK �K � NK �K �
X
i

Ni
�i;K �K

�i
;

(8)

as shown in Fig. 4. Not surprisingly, ~Neq
�;B �B and ~Neq

�;K �K

remain almost constant due to the constraint in Eq. (4).
In Fig. 5, we compare our total baryon to pion ratio �B�

�B�=�� to experimental data from PHENIX [21], and
STAR [22]. �B� �B�=�� is calculated by B� �B � p�
�p� n� �n � 2�p� �p�. It should be noted here that in our
calculations, we use both the effective number of baryons,
in Eq. (8), and pions, in Eq. (6). We obtain �B� �B�=�� �
0:3, which matches the experimental data well. Moreover,
our results are independent of the chosen initial conditions.
Also, in Fig. 5, we compared the kaon to pion ratio to the
data at PHENIX [21] and STAR [22] (both K=�� and
�K=�� are shown). Again, we use the effective number of

kaons (8) and pions (6). Our K=�� ratios compare to the
experimental data very well, and they level off between
0.16 to 0.17. As with the baryon antibaryon pairs, we do not
see a very strong dependence on our initial conditions. In
Fig. 5, both figures agree well with experimental data.
Moreover, they remain roughly constant after T � 170�

160 MeV. This demonstrates that the potential Hagedorn
states can be used to explain dynamically the build up of
the known particle yields.

In future work, we will consider strange baryonic de-
grees of freedom and thoroughly study the effects of our
initial conditions and parameters. To conclude, we used
Hagedorn resonances as a dynamical mechanism to
quickly drive baryons and kaons into equilibrium between
temperatures of T � 165� 140 MeV. Once a Bjorken
expansion was employed, we found that our calculated
K=�� and �B� �B�=�� ratios matched experimental data
well, which suggests that hadrons do not at all need to start
in equilibrium at the onset of the hadron gas phase.
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