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Cascading Gravity: Extending the Dvali-Gabadadze-Porrati Model to Higher Dimension
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We present a generalization of the Dvali-Gabadadze-Porrati scenario to higher codimensions which,
unlike previous attempts, is free of ghost instabilities. The 4D propagator is made regular by embedding
our visible 3-brane within a 4-brane, each with their own induced gravity terms, in a flat 6D bulk. The
model is ghost-free if the tension on the 3-brane is larger than a certain critical value, while the induced
metric remains flat. The gravitational force law “cascades” from a 6D behavior at the largest distances
followed by a 5D and finally a 4D regime at the shortest scales.
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Introduction.—The present acceleration of the Universe
is a profound mystery. While the observational data are
consistent with a cosmological constant (CC) of order
(1073 eV)*, this value is in stark disagreement with parti-
cle physics computations. The problem is even more severe
than the hierarchy problem in the Standard Model, since
dynamical solutions are impossible in theories with a
massless 4D graviton [1]. In the same way as the perihelion
precession of Mercury was explained by a modification of
Newtonian gravity, an alternative approach is to assume
that the acceleration signals a breakdown of general rela-
tivity at cosmological distances.

The Dvali-Gabadadze-Porrati (DGP) model [2] provides
a simple mechanism to modify gravity at large distances by
adding a localized graviton kinetic term on a codimension
1 brane in a flat 5D spacetime. The extension to higher
dimensions is particularly important both for its possible
embedding into string theory and for its relevance to the
CC problem [3,4]. However, the natural generalization of
the DGP model with higher codimension branes is not
straightforward [5,6]. On the one hand, these models re-
quire some regularization due to the divergent behavior of
the Green’s functions in higher codimension. More seri-
ously, most constructions are plagued by ghost instabilities
around flat space (not to be confused with those of the self-
accelerating branch of standard 5D DGP) [5,6]—see [7]
for related work. The purpose of this Letter is to show that
both pathologies can be resolved by embedding the codi-
mension 2 DGP model into a codimension 1 brane with its
own kinetic term. It will be interesting to see if this setup
allows for higher-codimension self-accelerated solutions.
Our present focus, however, is to derive a consistent frame-
work in which gravity is modified in the infrared.

Scalar.—We shall focus on the codimension 2 case. As a
warm-up, we consider a real scalar field with action,
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describing a codimension 2 kinetic term embedded into a
codimension 1 one in 6D. We will impose throughout the
Letter Z, X Z, orbifold projection identifying y — —y and
z — —z. The model possesses the two mass scales, ms =
M3 /M3 and mg = M¢/M3.

In absence of the 4D kinetic term, the propagator on the
codimension 1 brane (4-brane) is the DGP propagator [2],

Go(y—y’)=%f j—q ,
5.J- 7Tp2+q2+2m6W
where y is the coordinate orthogonal to the codimension 2
brane (3-brane), p the 4D momentum, and g the momen-
tum along y. To find the exact 5D propagator, we can treat
the 4D kinetic term (located at y = 0) as a perturbation and
then sum the series. One finds,

G(y,y) = Gy — y') — M3G°(y)p*G°(—y')
+ M{G°(y)p*G°(0)G(—y') + ...
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In particular, the 4D brane-to-brane propagator is deter-
mined in terms of the higher dimensional Green’s function,
G, = G(0,0) = G°0)/[M3G°(0)p* + 1].
For the case at hand,

2 2mg — p
G°0) = —tanh_l( f6—> 3)
7TM§,/4m% - p? 2mg + p

For p > 2myg, the analytic continuation of this expression is
understood.

=Gy —y) -
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Remarkably, the 5D kinetic term makes the 4D propa-
gator finite, thereby regularizing the logarithmic diver-
gence characteristic of pure codimension 2 branes. In
particular, when M5 goes to zero, one has G, —
Mg *log(p/mg), reproducing the codimension 2 Green’s
function with a physical cutoff given by mg. The corre-
sponding 4D Newtonian potential scales as 1/7° at the
largest distances, showing that the theory becomes six
dimensional, and reduces to the usual 1/r on the shortest
scales. Its behavior at intermediate distances, however,
depends on ms¢. If ms > mg, there is an intermediate 5D
regime; otherwise, the potential directly turns 6D at a
distance of order (msmg)~'/2 log(ms/mg).

Gravity.—Let us now turn to gravity. In analogy with the
scalar field, we consider the action,

M} M3 M}
s=% [Vemere+ 5 [ymmRs + 5 [ vTmRs

where each term represents the Ricci scalar. This guaran-
tees that the model is fully 6D general covariant.

To find the propagator, it is convenient to follow the
same procedure as for the scalar and sum the diagrams with
insertion of the lower dimensional kinetic term, i.e., the
Einstein tensor £. For our purpose, we only compute the
propagator on the 3-brane. Given the higher dimensional
propagator, the brane-to-brane propagator due to the in-
sertion of a codimension 1 term is, in compact form,

Guvap = {Gl1 = MIEGT Y yap = GO, sHLY, (D)
where the first equality refers to the same resummation as
in (2) and G(})wy 5 is the 4D part of the higher dimensional

Green’s function evaluated at zero. The tensor H}, satis-
fies by definition,

) 1
[1 — M3EGO1SHY, = 5(57555 + 6852, (5)

To find H, one can write the most general Lorentz cova-
riant structure compatible with the symmetries,

HYS = (8285 + 836%) + b nap + c(p?p, 83
+ p°pady + pYppdl + PPppdl) + dpTpPnagp
+en”papp T PP’ Papp

where 7,z represents the flat Minkowski metric.
Requiring that this satisfies Eq. (5) leads to a system of
linear equations whose solution determines the coefficients
a, b, c, d, e, f. Using this information, one then recon-
structs the exact propagator from Eq. (4).

It is straightforward to apply this technique to cascading
DGP. Starting from 6D, the propagator on the 4-brane is [4]

G _ Mwmpfing T Mmofine — %ﬁMNﬁPQ ©)
Mnre 2M3(p2 + 2mgps)

T pup L
where 7y = Mun T+ 2;;’6[]”5, and M, N ... are 5D indices

and p3 = pyp". G, is obtained by integrating the 5D
propagator with respect to the extra momentum. To com-
pute the propagator on the 3-brane, we determine the
coefficients a, b, c, d, e, f through the system of linear
equations (5). One finds,
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where I; = M3G°(0)/2 with G°(0) defined in (3) and
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All these coefficients are finite, showing that the regulari-
zation is also effective for the spin 2 case.

Having determined the coefficients of the tensor H, the
full propagator is given by Eq. (4). To linear order the
amplitude between two conserved sources on the brane is
rather simple,

f=

1

Ip*—1
— T (T T — P TT'), ®)
M4 IlP + 1

211p2 —4

and only depends on the first integral /.

The coefficient in front of the amplitude is exactly as for
the scalar; however, there is a nontrivial tensor structure.
One worrisome feature of this amplitude is that the relative
coefficient of T, 7'#” and TT" interpolates between —1/4
in the IR and —1/2 in the UV. The —1/4 in the IR gives the
correct tensor structure of gravity in 6D and is unavoidable
because at large distances, the physics is dominated by 6D
Einstein term. From the 4D point of view, this can be
understood as the exchange of massive gravitons and an
extra-scalar. The —1/2 in the UV, on the other hand,
signals the presence of a ghost. This agrees with previous
results [5,6] which used a different regularization. From
the 4D point of view, the theory decomposes into massive
spin 2 fields and scalars. Since the massive spin 2 gives an
amplitude with relative coefficient —1/3, the extra repul-
sion must be provided by a scalar with wrong sign kinetic
term. Separating from Eq. (8) the massive spin two con-
tribution, we identify the scalar propagator as

1 I

Gaoyt = —— ——. 9
ghost 6M% 11]92 —9 ( )

This propagator has a pole with a negative residue; there-
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fore, it contains a localized (tachyonic) ghost mode in
addition to a continuum of healthy modes.

Ghost free theory.—To clarify the origin of the ghost, it
is illuminating to consider the decoupling limit studied in
[8]. This will allow us to show how a healthy theory can be
obtained by simply introducing tension on the 4D brane
while retaining a flat intrinsic geometry.

In the 6D case, the decoupling limit [8] corresponds
to taking Ms, Mg— oo with A, = (m%Mg/z)z/7 =
(M}°/M?2)"/7 finite. In this limit, the physics on the 4-brane
admits a local 5D description, where only the nonlineari-
ties in the helicity O part of the metric are kept, and are
suppressed by the scale A ;. The effective 5D Lagrangian is
given by

M3 3 9
Ly = —>pMN —M3om)>?(1 + —=——0sm
5 3 WY (ER)yn > (0 )( 32m2 5 >

2
+ 8(z)<Ag4ﬁ“”(c‘fﬁ)W + ;ﬁ’“’TW) (10)

where (Eh)yy = Ohyy + ... is the linearized Einstein
tensor, M, N ... are 5D indices, and u, v... are four di-
mensional. We have rescaled 7 and h,,, so that they are
dimensionless, and the physical 5D metric perturbation is

By = hyn + T (11)

The first line of (10) is the 5D version of the “7r
Lagrangian™ introduced in [8] for the DGP model. In
addition to this, we have the localized curvature term on
the 3-brane, which depends on 4D physical metric / v
This introduces a kinetic mixing between 7 and the 5D
metric.

We now take a further step and compute the boundary
effective action valid on the 3-brane. At the quadratic
order, by integrating out the fifth dimension, the 5D kinetic
term of 7 produces a 4D “mass term” ~M§\/—D4 while
the Einstein tensor gives rise to Pauli-Fierz (PF) structure
for h,, on the boundary [9],

M3
Ly=— TSh’“’\/——D“(hM — hnyu) — 3M3ary /-0y
Mézt LUV (Cl 1~ v
+ ?h'“ (5h)w, + zh'“ TM,,, (12)

where h,, and 77 now denote the 5D fields evaluated at the
3-brane location.
In terms of the physical metric, (12) takes the form,

M3 ~ ~ 3 A
L4 = — TShMV\/_D4(hMV - hnuv) - EMgW _D4h
Mé% v (e 1z v
+ gt h (ER), + 3 T (13)

Note that the kinetic term for 7 is completely absorbed by

that of 7
remains.

From this, it is straightforward to show the presence of a
ghost. The scalar longitudinal component of 4, acquires a
positive kinetic term by mixing with the graviton [8,10].
By taking

uv» and only a cross term between 7 and hj

0w (g
Mg/ _|:|4

one finds that there are in fact two 4D scalar modes whose
kinetic matrix in the UV is

I/Nl,u,v = ﬁuv + d)nuv +

L] ) 03
which has obviously a negative eigenvalue corresponding
to a ghost.

Having understood the origin of the ghost, we are now
ready to show how to cure it. To achieve this, we clearly
need to introduce a positive localized kinetic term for 7.
This can arise from extrinsic curvature contributions. The
simplest and most natural choice is to put a tension A on
the 3-brane. This produces extrinsic curvature while leav-
ing the metric on the brane flat since the tension only
creates a deficit angle.

The solution to the 5D equations following from (10) for
a 3-brane with tension A is [11]

A
70 = _—|z], A, = —

. 16
6Mg Izln/_LV ( )

6M?
This is an exact solution including the nonlinear terms for
m—they vanish identically for this profile. The back-
ground corresponds to a locally flat 6D bulk with deficit
angle A/M¢ and with flat 4D sections.

The crucial point is that on this background, the 7
Lagrangian acquires contributions from the nonlinear
terms. These can be found considering the perturbations,

7= 79(2) + m(z, x*),

huy = h(2) + 8k, (2, x7), (17)

T,, = —An,, +0T,,
Plugging (17) in (10) and dropping o, one obtains at
quadratic order (up to a total derivative),

9 A

This is a localized kinetic term for 7 that contributes to the
4D effective action with a healthy sign when A > 0.
Therefore, for large enough A, the kinetic matrix for the
2 scalars (15) becomes positive, and the ghost is absent.

This can also be seen by computing the one particle
exchange amplitude. With the addition of (18), the effec-
tive 4D equations are
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M3(Eh),, — 2M3\=04(h,, — hn,,) = —2T,, + 6M3/-0O,mn,,,, (19)

3A 3
5204 = M3Y=Tih (20)
6

Using the Bianchi identities and the conservation of 7,
the double divergence of (19) leads to

M3=O,[(ERE + 60,7 = 0, 1)

where we have used (i)l = 2(aﬂa”1€w — O,h). On the
other hand, the trace of (19), in conjunction with (20) and
(21), leads to

M3Oym = —2T%, (22)

where @(ﬂ.) = [9(A/méM‘2‘) - 6]|:|4 - 24m5\/—D4.
Combining (19), (21), and (22), one derives that the
physical metric is, up to pure gauge terms,

~ -2(1 T 1
=—=-l_(r,, —= +—Tn,lL (23
h rv ]‘442t {@( mv 3 77,uu> @(77) 7’/,“1} ( )

where O = [0, — 2ms+/—L],. The tensor structure of the
amplitude interpolates between —1/4 in the IR and

1 1/3 A -1
JE—— _l’_ P
3 6 (2 M3m? )
in the UV. The amplitude above corresponds to the ex-
change of massive spin 2 fields and a scalar obeying

Eq. (22). The (DGP-like) kinetic term for the scalar is
positive as long as

2
A>3 Mim}, (24)

In this regime, we see that the localized ghost disappears
and the scalar sector is composed of a healthy resonance.

In the limit we are considering, the tension required is
consistent with having six noncompact dimensions.
Indeed, requiring that the deficit angle in the bulk be less
than 27 leads to A < 27M¢. It follows that

3TME > M3M?, (25)

which is always satisfied in the 5D decoupling limit and
displays the necessity of the induced term on the codimen-
sion 1 brane. Moreover, the condition above is equivalent
to having mg < ms, which suggests that in order to avoid
the ghost, one should cascade from the highest dimension
down to 4D “‘step by step.”

From a phenomenological point of view, observations
require that ms < H,), the present Hubble scale. The most
interesting possibility is when the 6D crossover scale is
larger but of similar order. Assuming that the formulas
above can be extrapolated in this regime for a Planckian
M,, this implies that M5 is of order 10 MeV and M ~
meV. The latter also sets the scale of A.

Discussion.—In this Letter, we have presented a six
dimensional DGP model with cascading localized kinetic

[
terms. The model interpolates between a 6D behavior at
large distances and a 4D one at short distances with an
intermediate 5D regime. The kinetic terms regularize the
divergent codimension 2 behavior. The model is ghost-free
at least for a certain range of parameters if on the codi-
mension 2 brane there is a large enough tension.

We have left several questions for future study. At linear-
level, the tensor structure of the graviton propagator is
inconsistent with observations. In the context of DGP,
this was shown not to be a problem because the nonline-
arities restore the correct tensor structure [12]. A hint of a
similar phenomenon in the present model is given by the
longitudinal terms of the graviton propagator (4). These are
singular when the mass parameters ms¢q vanish and give
large contributions to nonlinear diagrams. In fact, we ex-
pect a “double” Vainshtein effect. For dense enough
sources, the nonlinearities should first decouple the extra
5D scalar mode restoring 5D behavior followed by another
step to 4D. Another important direction to study is cos-
mology. The model has the intriguing codimension 2 fea-
ture that tension does not curve the space. This is obviously
of interest for the cosmological constant problem.
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