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We study the effect of a strong, oscillating driving field on the dynamics of ultracold bosons held in an
optical lattice. Modeling the system as a Bose-Hubbard model, we show how the driving field can be used
to produce and maintain a coherent atomic current by controlling the phase of the intersite tunneling
processes. We investigate both the stroboscopic and time-averaged behavior using Floquet theory, and
demonstrate that this procedure provides a stable and precise method of controlling coherent quantum
systems.
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Introduction.—Recent experimental advances in the cre-
ation of Bose-Einstein condensates (BECs) from ultracold
atomic gases have stimulated huge interest in investigating
the coherent many-body dynamics of trapped bosons. By
superposing counter-propagating laser beams, it is possible
to impose extremely well-controlled lattice potentials on
these systems. The precision and flexibility afforded by this
both suggests their use as ‘‘quantum matter simulators’’ [1]
for systems of interest from other areas of physics such as
the integer quantum Hall effect [2], and also permits the
clean observation of coherent lattice phenomena such as
Bloch oscillations [3], the formation of repulsively bound
pairs [4], and the Mott transition [5].

As well as their purely theoretical interest, these systems
are also highly attractive candidates for applications such
as quantum information processing due to their long co-
herence times. A powerful tool to control their dynamics is
provided by the effect termed ‘‘coherent destruction of
tunneling’’ [6], in which driving the system with an oscil-
lating field has the effect of renormalizing the intersite
tunneling amplitude. For certain parameters of the driving
field, the tunneling can even be reduced to zero, and thus it
has been proposed to use this effect to control the quantum
phase transition between the superfluid and the Mott state
[7,8].

In this Letter, we show how an oscillating driving field
can not only be used to control the amplitude of the
tunneling, but also its phase. This permits the generation
of a matter-current in analogy to the current induced in a
conducting ring threaded by a magnetic flux. The creation
of tunneling-phases has been studied before in BECs using
either rotating lattices [9], or by using the atoms’ internal
degrees of freedom to mimic a fictitious magnetic field
[10]. The scheme we propose is extremely simple in com-
parison, requiring only the controlled shaking of the optical
lattice, which has already been demonstrated in experi-
ment. It also reverses the normal role of CDT in a novel
way, since the quantum interference effects which produce
CDT are employed here to induce motion, rather than to
suppress it. We study the effect over a range of interaction

strengths, and find it to be present from weak interactions
right up to the onset of the Mott state. A surprising feature
is that while interactions do reduce the magnitude of the
current, they do not introduce dephasing or dissipation as
seen, for example, in Bloch oscillations [11], but instead
render the current-generation more robust.

Model.—We consider a one-dimensional (1D) optical
lattice, in which the atoms are confined to the lowest Bloch
band. In this case, the system can be described very accu-
rately [12] by the Bose-Hubbard (BH) model

 HBH �
X
hm;ni

��Jayman � H:c:� �
U
2

X
m

nm�nm � 1�: (1)

Here, am�a
y
m� are the standard boson destruction (creation)

operators, nm � aymam is the number operator, and U is the
Hubbard-interaction between a pair of bosons occupying
the same site. The tunneling amplitudes J connect nearest-
neighbor sites hm; ni, and we take @ � 1. We now impose a
time-dependent potential which rises linearly across the
lattice

 H�t� � HBH � K�t� sin�!t� ��
X
j

jnj; (2)

where ! is the frequency of the driving field, and K�t�
parameterizes its amplitude. Importantly, we include the
phase of the driving field, �, as an additional control
parameter. This form of potential can be produced by
periodically phase-modulating one of the laser fields pro-
viding the optical lattice and has already been used in cold
atom experiments [13] to induce CDT.

We begin by considering the case of a driving field of
constant amplitude, K�t� � K. The Hamiltonian of the
system, Eq. (2), is then periodic, with period T � 2�=!.
Accordingly, we may use the Floquet theorem to write
solutions of the time-dependent Schrödinger equation in
the form u�t� � exp��i�t�u�t�, where u�t� is a T-periodic
function termed a Floquet state, and � is called a quasi-
energy. In the high-frequency limit, where !� �J;U� is
the dominant energy scale of the problem, perturbative
approximations to the Floquet states can be obtained by
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solving the Floquet equation for just the driving potential,
and then including HBH as a perturbation. In this case,
following the procedure described in Refs. [14,15], the
Floquet states are given to first-order by the eigenstates
of an operator H �t� which is identical to HBH, but with
periodically varying tunneling amplitudes given by

 J�t� � J
1

T

Z T

0
e	iKF��;t�d�; (3)

where F��; t� �
R
�
t sin�!t0 � ��dt0 is the phase accumu-

lated over the interval (t, �), and the � (�) applies to
forward (backward) hopping. If we now consider the sys-
tem stroboscopically, that is, at discrete times t � nT
where n is integer, the time dependence of the tunneling
amplitudes disappears, and the system is effectively gov-
erned by a static Hamiltonian H �0�, with the Floquet
states uj�0� playing the role of energy eigenvectors.
Simplifying Eq. (3) then reveals that the action of the
driving field is to renormalize the tunneling amplitudes as

 Jeff � Je	i�K=!� cos�J 0�K=!�; (4)

where J 0 is the zeroth Bessel function of the first kind. For
� � �=2 (cosinusoidal driving), this result reproduces the
familiar Bessel function renormalization [7,8] of the tun-
neling. An unanticipated result, however, is that the hop-
ping in general acquires a nonzero phase, which is
maximum for � � 0 (sinusoidal driving).

It may appear surprising that � can induce a nontrivial
phase, as changing � is equivalent merely to shifting the
time origin. In practice, however, the driving field must be
turned on at a certain time, which thereby does pick out a
specific value for the phase of the driving field. Since the
system is completely coherent, the effect of this initial
condition is not lost during the subsequent time-evolution,
and thus the driving phase � can produce different physical
results. The central result of our work is that if K is
increased from zero sufficiently slowly, the Floquet states
of the system are able to adiabatically follow [16], and
thereby acquire the K-dependent phase � � K�t� cos�=!.
As a result, a given initial state can be transformed into a
current-carrying state by slowly ramping the driving po-
tential from zero to the value that gives the desired
hopping-phase.

Results.—To verify these results, we study the behavior
of an N-site BH system by numerically propagating the
many-particle wave function under the time-dependent
Hamiltonian (2). We focus on the case of commensurate
filling, where the number of bosons is equal to N, so that in
the limit of large U, a well-defined Mott state exists. The
rapid increase in the dimension of the Hilbert space means
that we could only consider systems of up to N � 10, but
examining the results as N is increased reveals that the
behavior we find is quite insensitive to lattice size. To
probe the behavior of the system, we measure the single-
particle momentum distribution

 ��p; t� �
1

N

XN
m;n

ei�m�n�ph �t�jaymanj �t�i: (5)

This quantity is remarkably size-independent [17], allow-
ing results from small lattice systems to be reliably ex-
trapolated to the thermodynamic limit. It can be observed
directly in experiment by time-of-flight absorption imag-
ing, and conveniently indicates whether the system is in the
superfluid or Mott-insulator regime [5]. When interactions
are weak (U
 J), bosons are delocalized over the lattice
in a superfluid state, and the system possesses long-range
phase coherence. Consequently, ��p� is sharply peaked, as
shown in Fig. 1. As the interaction is increased, the peaks
broaden and reduce in height, indicating that the bosons
become progressively more localized on the lattice sites.
For sufficiently large values of U=J, the atoms localize
completely to form the Mott state, for which the momen-
tum distribution is completely flat. In 1D, this phase tran-
sition is quite soft, giving a large range of U over which
��p� is peaked.

We begin by considering the case of an intermediate
interaction strength, U � 8J. To place the system in the
high-frequency regime, we set ! � 30J and use a sinusoi-
dal driving field (� � 0). The precise form in which K�t� is
increased from zero is not important as long as it satisfies
the adiabaticity constraint, and for simplicity, we consider
a linear ramp K�t� � K0t. As noted earlier, we will evalu-
ate all physical quantities stroboscopically at times t � nT.
The system is initialized in its ground-state, and in
Fig. 2(a), we plot the expectation value of the lattice
current, I � 2JImhama

y
n i, as a function of the driving

amplitude. For K�t� � 0, the current is zero due to the
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FIG. 1 (color online). Normalized momentum density ��p�=N
for the first Brillouin zone of an 8-site lattice holding eight
bosons. For a perfect superfluid, the momentum density is
sharply peaked, showing the presence of long-range coherence.
As U is increased, the peak flattens and broadens, until for U �
16J, the distribution is almost flat, indicating the proximity to the
formation of a Mott insulator.
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symmetry of the momentum distribution. As K is in-
creased, however, the peak in ��p� is displaced from the
center of the Brillouin zone due to the induced hopping-
phase �, ��p� ! ��p���. As a result, I becomes non-
zero due to the imbalance between the left- and right-
moving momentum components.

Following its initial increase, I displays a damped oscil-
latory dependence on K=!. To interpret this behavior, we
show the corresponding response of the momentum density
in Fig. 3. As expected, the initial effect of the ramping
potential is simply to shift the locations of the peaks in the
momentum distribution by inducing the hopping phase. As
the peaks shift, however, their amplitude is reduced by the
Bessel function renormalization of the hopping amplitude
(4). As K=!! 2:4048, the first zero of J 0, the effective
hopping vanishes, and the system thus makes a transition to
the Mott state [7], and the momentum density flattens. As
K is increased further, peaks reappear in ��p�, but their
location is discretely shifted. This occurs because Jeff has
become negative; writing it as Jeff � jJeffj exp�i�� clearly
indicates that the peaks in the momentum density will be
displaced by �. Predicted in Ref. [18], this shift has
recently been experimentally observed for a weakly inter-
acting (U ’ 0:1J) system in Ref. [13]. The intricate behav-
ior of I in Fig. 2(a) thus arises from a combination of the

shifting location of the peaks, together with many-particle
effects arising from the competition between Jeff and U.
The roughness visible in the current arises from departures
from adiabaticity in the driving. As the ramping rate is
decreased, and so approximates adiabatic evolution more
closely, this roughness is progressively eliminated.

For strong interactions, the ground state of the system
consists approximately of the Mott state, j11111 . . .i, with
a small admixture of excited states. The dominant dynami-
cal processes will be nearest-neighbor tunneling between
the Mott state and ‘‘particle-hole’’ states, separated from
the Mott state by an energy gap of �U, where one site is
doubly occupied and one site is empty (e.g., j12011 . . .i).
Including only these processes, we can obtain an approxi-
mate form for the induced current

 I ’ 2Jj�j2 sin�K cos�=!�J 0�K=!�; (6)

where j�j2 is the weight of the particle-hole states in the
interacting ground state. For large U, j�j2 decays as�U�1

as the ground state converges toward the Mott state. Using
� as a fitting parameter, we show in Fig. 2(a) that this
expression indeed provides an excellent description of the
current. Equation (6) reveals the two distinct sources for
the zeros of current: (i) when K=! � n�, the momentum
density is symmetrically peaked at the center of the
Brillouin zone, and the positive and negative currents
cancel, (ii) when the Bessel function becomes zero, Jeff

is suppressed, and so the tunneling itself is quenched.
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FIG. 3 (color online). Momentum distribution for an 8-site
system (U � 8J) under sinusoidal driving with a linearly ramped
amplitude. To guide the eye, three Brillouin zones are plotted,
and dashed lines indicate the evolution of the central peak. The
vertical lines mark the zeros of J 0. As K increases, the peaks
steadily shift in momentum due to the induced hopping phase,
and their amplitude reduces according to the Bessel function
J 0�K=!�. At K=! � 2:4048, the Bessel function approaches
zero, and the system becomes a Mott insulator with a flat
distribution. Increasing K further causes Jeff to change sign,
and the peaks reappear with a shift of � (see text). This pattern
then repeats.
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FIG. 2 (color online). Current induced by a linearly ramped
driving field K�t� � K0t, where K0 � 0:05T�1, in an 8-site
system with interaction strength U � 8J. The driving is sinu-
soidal (� � 0). (a) The induced current (solid line), shows a
decaying oscillatory behavior, described well by Eq. (6) (dashed
line). As well as at multiples of �, marked by the vertical lines,
zeros of the current also occur when J 0�K=!� � 0 due to CDT.
(b) As above, the dashed line indicates the current produced by a
continuously ramped field. Holding K�t� constant after a certain
time (shown schematically in the inset) keeps the current at a
constant level; the solid curve shows the effect of ramping the
field until t � 21T, which gives the maximum current I0.
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An important consequence of the interaction is that
larger values of U confer increased stability during the
ramping process. For weak interactions, only extremely
slow ramping can be used, or the system will be excited
from its instantaneous ground state, and control of the
coherent current will be lost. When U is large, however,
the resulting energy gap isolates the ground state from the
rest of the spectrum and makes the adiabatic condition
easier to attain, thereby allowing more rapid ramping to
be used.

Differentiating Eq. (6) reveals that the maximum cur-
rent, I0, occurs for K=! ’ 1:0311. In Fig. 2(b), we show
the effect of ramping the value of K�t� up to this value, and
then keeping it fixed (see inset), which maintains the
induced current at its final value. The magnitude of the
current depends only on the final value of K=!, and so by
regulating this value, any desired value of current within
the range 	I0 can be generated. In Fig. 4 we show the
dependence of I0 on the phase of the driving � for several
different values of U. All the curves show the
sin�K cos�=!� dependence expected from Eq. (6), and
the magnitude of the current remains significant even for
large interaction strengths near the onset of the Mott tran-
sition. While smaller values of U allow larger currents to
be induced, slower ramping rates must then be used, giving
a trade-off between the two effects in experimental
implementations.

Conclusions.—We have described a means of inducing a
coherent atomic current by adiabatically controlling the
renormalization of the intersite tunneling. The presence of
interactions both stabilizes this mechanism, and also in-
troduces novel strong-correlation effects. To reveal this
effect, we have employed a stroboscopic measurement
scheme; this implies that in experiment, measurements
must be made at well-controlled intervals and be suffi-
ciently rapid to reflect the system’s instantaneous state.
For typical cold atom systems, this would require temporal
control of the order of milliseconds, which should be easily
achievable [13]. If the measurements have insufficient time

resolution, it would then be appropriate to consider the
time average of Eq. (3), which yields the result that hJeffi �
JJ 2

0�K=!�, and thus the hopping-phase vanishes and the
effective hopping is proportional to the square of the
Bessel function. For a tilted lattice, it can be shown that
the tunneling is renormalized as J 2

m�K=!�, where m! is
the energy difference between adjacent sites. Interestingly,
such a dependence has been recently observed in [19] for
m � 1, 2. While we have focused on the case of bosonic
atoms, this mechanism should be equally applicable to cold
fermionic atoms or electronic systems, provided that they
possess the required coherence properties.

We thank Martin Holthaus for stimulating discussions.
This work was funded by the MEC (Spain) through Grant
Nos. FIS2004-05120 and FIS2007-65723. C. E. C. was
supported by a Ramón y Cajal Fellowship.

[1] D. Jaksch and P. Zoller, Ann. Phys. (N.Y.) 315, 52 (2005).
[2] B. Paredes, P. Zoller, and J. I. Cirac, Phys. Rev. A 66,

033609 (2002).
[3] O. Morsch, J. H. Müller, M. Cristiani, D. Ciampini, and E.

Arimondo, Phys. Rev. Lett. 87, 140402 (2001).
[4] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker

Denschlag, A. J. Daley, A. Kantian, H. P. Buchler, and P.
Zoller, Nature (London) 441, 853 (2006).

[5] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
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FIG. 4 (color online). The maximum current, I0, induced in
an 8-site system depends on the phase of the driving field, �.
In all cases, I0 is maximized for sinusoidal driving and is zero
for the cosinusoidal case. Solid lines plot the dependence
� sin�K cos�=!�, where � is a fitting parameter, and show
excellent agreement with Eq. (6). As U is increased, I0 reduces,
but even for U � 16J, the induced current is significant.
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