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Populations of swimming micro-organisms produce fluid motions that lead to dramatically enhanced
diffusion of tracer particles. Using simulations of suspensions of swimming particles in a periodic domain,
we capture this effect and show that it depends qualitatively on the mode of swimming: swimmers
‘‘pushed’’ from behind by their flagella show greater enhancement than swimmers that are ‘‘pulled’’ from
the front. The difference is manifested by an increase, that only occurs for pushers, of the diffusivity of
passive tracers and the velocity correlation length with the size of the periodic domain. A physical
argument supported by a mean field theory sheds light on the origin of these effects.
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In the present Letter we consider the possibility of
emergence of large scale fluid motion and enhanced fluid
transport in populations of small swimming organisms. At
the global scale, it has been suggested that swimming
organisms such as krill can alter mixing in the oceans
[1,2]. At the laboratory scale, experiments with suspen-
sions of swimming cells have revealed characteristic swirls
and jets much larger than a single cell, as well as causing
increased diffusivity of tracer particles [3–7]. This en-
hanced diffusivity may have important consequences for
how cells reach nutrients, as it indicates that the very act of
swimming towards nutrients alters their distribution. The
enhanced diffusivity has also been proposed as a scheme to
improve transport in microfluidic devices [8] and might be
exploited in microfluidic cell culture of motile organisms
or cells.

The feedback between the motion of swimming particles
and the fluid flow generated by that motion is thus very
important. Nevertheless, in the literature on collective
dynamics of self-propelled particles, this effect has re-
ceived little attention. Most previous attempts to under-
stand the collective motion of swimming micro-organisms
fall into two broad categories: ‘‘particle level’’ approaches
based on ad hoc interaction rules between the individual
agents, e.g. [9], and continuum models of active suspen-
sions based on phenomenological field equations [10–12].
The hydrodynamics of single swimming organisms at low
Reynolds number have been studied for many years [13–
15], and studies of hydrodynamic interactions (HI) have
also been performed for pairs of swimmers [16–18].
However, only a small number of studies [19–24] have
examined particle level models of populations of
swimmers that include the fluid motion caused by the
swimmers and its influence on transport. Hernandez-
Ortiz et al. [19,20] developed a simple physical model of
self-propelled particles, and performed simulations of
them in a confined domain. Their work showed that multi-
body HI between self-propelled particles were sufficient to
lead to fluid motions characteristic of those seen in experi-

ments. Llopis and Pagonabarraga [21] performed simula-
tions of self-propelled particles in two-dimensions,
observing aggregates of swimming particles and a decrease
of velocity with increasing volume fraction. Saintillan and
Shelley [22] performed simulations of long, slender self-
propelled rods propelled by an imposed shear stress on the
surface of part of the rods. Their main result was that ini-
tially nematically ordered swimmers do not remain aligned
except with very near neighbors. Pedley and co-workers
[23,24] examined the rheology and random walk motion of
semidilute suspensions of self-propelled spheres.

We consider here a suspension of N neutrally buoyant
rodlike swimmers in a spatially periodic cubic fluid do-
main of side length L, in a concentration regime dilute
enough that the dominant interactions between the parti-
cles arise from the fluid motions that they generate as they
swim. Each swimmer has a characteristic length ‘, and in
isolation moves in a straight line with speed vis. It is
assumed that the Reynolds number visL=� is much less
than 1, where � is the fluid kinematic viscosity. The
concentration is given as an effective volume fraction
�e � �N‘3=�6L3�—this would be the true volume frac-
tion if the swimmers were spheres of diameter ‘. To allow
large populations (>104 swimmers) over long times, a
simple model of each swimmer is adopted, following our
previous work [19].

Each self-propelled particle is represented as two beads
connected by a stiff spring with equilibrium length ‘ as
shown in Fig. 1. The unit vector pointing along the axis
from bead 1 to bead 2 is denoted n. The propulsion is
provided by a ‘‘phantom flagellum’’ that we do not treat
explicitly, but only through its effect on the swimmer body
and the fluid. This flagellum exerts a force Ff on bead 1 of
the swimmer, and also exerts a force�Ff on the fluid. This
force on the fluid occurs at the position of bead 1. With this
model we can consider ‘‘pushers’’ or ‘‘pullers’’ depending
on whether Ff is parallel or antiparallel to n, respectively.
A pusher sends fluid away from it fore and aft, with fluid
moving toward its ‘‘waist,’’ and vice versa for a puller. A
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cell whose flagella propel it forward predominantly from
behind would be a pusher [19,25]. We shall see that this
distinction is important. The swimmers also interact with
an excluded volume potential using the repulsive portion of
the Gay-Berne potential [26].

The motion of the swimmers is calculated by writing a
force balance (neglecting inertia because of the small size
of a microorganism) for each bead. On bead 1 of each
swimmer this is Ff � Fh1 � Fc1 � Fe1 � 0, where Fh1 is
the hydrodynamic drag force on the bead, Fc1 is the con-
nector (spring) force on the bead, and Fe1 is the excluded
volume force on the bead. On bead 2 of each swimmer the
force balance is identical except without a flagellum force.
The drag force is written using Stokes’s law, Fh1 �
�6��a� _r1 � v0�r1��, where a is the bead radius, � is the
fluid viscosity, r1 is the position of the bead, and v0�r1� is
the fluid velocity at r1 generated by all other beads and
phantom flagella. This fluid velocity is calculated using an
order N method [27], treating each bead of the swimmer as
a regularized point force. We set ‘ � 3a. Note that the net
force exerted by an isolated swimmer on the fluid is zero—
overall, a neutrally buoyant swimmer is a force dipole to
leading order. This model captures the universal far-field
behavior while neglecting the near-field corrections to
interactions between swimmers, which are dependent on
the details of the organism. The validity of this approxi-
mation is supported by recent simulations [28]. Finally, we
note that the limited set of results with multibead rod
swimmers is qualitatively consistent with those for the
two-bead swimmers.

The fluid motion generated by each swimmer perturbs
the trajectories of fluid elements (tracers) and other
swimmers. At the volume fractions considered here, this
motion also eliminates any long-range orientational order
among the swimmers. The motion of both tracers and
swimmers, while ballistic at short times, becomes diffusive
at long times. The tracer diffusion, in particular, shows

important and unanticipated behavior. Figure 2 shows
tracer mean-squared displacements (inset) and the long-
time tracer diffusivity Dt in a suspension of pushers as a
function of system size for�e � 0:1. The diffusivity grows
significantly with system size, greatly enhancing it beyond
that for a suspension of pullers (also shown), which ex-
hibits only weak or negligible system size dependence.

The system size dependence observed for pushers is due
to collective behavior; simulations in which the swimmers
do not interact, swimming in straight paths, do not show a
significantly changing diffusivity. This observation has
important implications for transport of nutrients, chemo-
attractants, and other chemical species in the environment
of a population of swimming organisms. For example,
organisms which concentrate toward an attractant will
disperse that attractant more rapidly if they are pushers
than if they are pullers. The remainder of this report
describes efforts to gain an understanding of the increased
transport.

The diffusivity is related to the fluid velocity through the
Green-Kubo relation [29], Dt �

1
3

R
1
0 hvt�0� � vt�t�idt,

where vt is the velocity of a tracer (fluid element) and
angle brackets indicate an ensemble average. The mean-
squared tracer velocity hv2

t i � hvt�0� � vt�0�i is shown in
Fig. 2 and has a much weaker system size dependence. The
simple idea that the swimmer velocity is the isolated value
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FIG. 2 (color online). System size dependence at volume
fraction �e � 0:1 for pushers. Variation of mean-squared tracer
velocity hv2

t i (squares), hv2
si � v

2
is (triangles), tracer diffusivity

Dt (circles), and tracer correlation time (stars). The dashed line is
a power law with � � 0:63. The tracer diffusivity in a suspen-
sion of pullers is shown with diamonds. (inset) Tracer mean-
squared displacements versus time for independent swimmers
(blue or dark gray), pullers (orange or light gray), and pushers
(green or gray) for N � 400 (solid) and N � 3200 (dashed).
Averages over 400 tracers typically give statistically converged
results.

FIG. 1 (color online). Illustration of a pushing organism,
swimmer model, and fluid disturbance they cause. The
double arrow signifies the flagellum force acting on the bead
and opposite force acting on the fluid, both acting at the center of
the first bead. The blue (or dark gray) lines represent streamlines
of the axisymmetric fluid disturbance. A puller produces the
same streamlines with the arrows reversed.
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plus the tracer velocity, vs � vis � vt, predicts that hv2
si 	

v2
is � hv

2
t i, which is verified in Fig. 2.

We now define a correlation time � � Dt=hv
2
t i for the

trajectories of tracer particles—tracer motion becomes
diffusive on times t
 �. Figure 2 shows � versus L;
over the entire range of system sizes considered, this
relation displays a clear power law dependence �� L�,
with � � 0:63� 0:03, over a range spanning a factor of 8
in L and thus 512 in N. These data represent the first
examination of system size effects on the fluid response
in swimming suspensions, and includes orders of magni-
tude more swimmers than any previous studies. For larger
systems the behavior may transition to a non-power-law
regime, but the system size dependence shown here will
nevertheless cause significant enhancement of transport in
a suspension of pushers.

The time � represents the time a tracer moves in the
same direction. A corresponding step length or correlation
length lt for the tracer’s random walk scales as �hv2

t i
1=2.

Because hv2
t i has a much weaker dependence on L than �,

our results imply the existence of a correlation length for
pushers that obeys lt � ‘�L=‘�� � ‘�1���L� over the range
of system sizes examined. The suspension of pushers leads
to enhanced correlation lengths in the fluid, beyond pullers
or independent swimmers, because of this increase with
system size.

Before elaborating on correlation lengths, we briefly
address the concentration dependence, using simple scal-
ing arguments. In the Green-Kubo relation, the tracer
velocity is a sum of disturbances due to each swimmer.
Assuming independence of the swimmers in the dilute
limit, the cross terms from the dot product vanish, resulting
inDt ��e. For the same reason, hv2

t i ��e, which leads to
a correlation time � that is independent of volume fraction.
Turning to swimmers rather than tracers, we note that in
the dilute limit, the swimmers continue in straight lines
until perturbed by other swimmers. If we define a cross
section � for these ‘‘collisions,’’ the mean free path or step
length ls scales as ‘3=���e�. Because hv2

si 	 v2
is � hv

2
t i

and hv2
t i ��e, the root-mean-squared swimmer velocity is

hv2
si

1=2 � vis �O��e�. Therefore, the diffusivity scales as
Ds � hv2

si
1=2ls ���1

e . For �e & 10�2 simulation results
follow these predictions (not shown), while above that
volume fraction, they begin to deviate, indicating a break-
down of the assumption of independent swimmers.

We now return to the issue of correlation lengths, and
consider the fluid velocity spatial correlation function,
C�r� � hL�3

R
vt�r0� � vt�r0 � r�dr0i. This is shown in

Fig. 3 at a volume fraction of �e � 0:1 for a range of
system sizes. For independently distributed point dipoles,
this correlation is Cid�r� � V2

d‘=r, where V2
d �

�ed2=�5�2�2‘4�, and d is the dipole moment [30].
Because of the finite size of the swimmers and domain,
real independent swimmers will deviate from this relation
when r & ‘ or r 	 L. Even this simple result illustrates the
possible complexities that arise in considering swimming

suspensions; the velocity correlations are very long-ranged
even in the absence of correlations between the positions
and orientations of the swimmers.

Figure 3 shows the correlation function at a character-
istic system size of N � 3200 (L � 25:589‘), for pushers,
pullers, noninteracting pushers (where the swimmers do
not feel the fluid motion but the tracer particles do) and the
point dipole theory result. The noninteracting swimmer
simulation shows the expected deviations from Cid at small
r and large r due to the assumptions of the theory. For the
interacting pushers, the tracer correlation is larger than that
of the ideal theory and is system size-dependent as illus-
trated below, while for pullers, it remains close to that for
independent swimmers, regardless of system size. The
presence or absence of system size dependence in the
velocity correlations is consistent with that for tracer
diffusivity.

The connection between extended spatial correlations
and the system size-dependent diffusivity for pushers is
made clearer by returning to the system size-dependent
correlation length lt. The inset to Fig. 3 shows the velocity
correlation function for pushers at �e � 0:1 for several
different system sizes with distance scaled by lt. Except at
distances close to the total box size, this scaling collapses
the results to a single curve. This suggests that the corre-
lation length inferred from the diffusivity also controls the
spatial velocity correlations. At intermediate distances, the
curves are consistent with a generalized point dipole the-
ory, with a correlation of the form C�r� � L�‘�1���=r.

The origin of the difference between pusher and puller
dynamics is not completely clear, but a simple argument
and some analysis can shed some light on the issue.
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FIG. 3 (color online). The correlation function at N � 3200
for different models at �e � 0:1: independent swimmers (blue
or dark gray), independent point dipole theory (black), full
simulation of pushers (green or gray), and pullers (orange or
light gray). (inset) Correlation function for pushers at different
system sizes with the spatial extent rescaled by lt � ‘0:37L0:63.
The arrow denotes increasing system sizes N � 400! 6400.
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Imagine an initially homogeneous isotropic suspension of
swimmers subject to a perturbation in the form of a shear
flow. In a suspension of pullers, the shear flow distorts the
orientation distribution and the resulting shear stress due to
this distortion opposes the original shear flow, driving the
system back to isotropy. This situation is closely analogous
to a Brownian suspension of fibers or polymer molecules,
the difference being that in the case of the swimmers the
force dipoles that lead to the stress are intrinsic rather than
induced by the shear. In the case of pushers, however, the
initial shear flow distorts the orientation distribution in the
same way, but now the force dipoles have opposite signs
from the puller case and lead to a shear stress that enhances
the original shear flow perturbation. This enhancement
further increases the orientation of the swimmers, thus
implying instability with respect to shear perturbations of
the homogeneous isotropic state.

This argument can be made precise through a simple
mean field theory (a related analysis without the above
physical argument is given by [31]). Let u � hvti and � �
hnni, where n is the director vector of a swimmer. For a
homogeneous isotropic state, the number density c is con-
stant, u � hni � 0 and � � 1

3�. In the point dipole limit
the stress tensor generated by the swimmers is �s � dc�,
where d is the dipole strength per swimmer (d > 0 for
pullers, d < 0 for pushers). Stokes’s equation relates u and
�s, and n evolves as would an infinitesimal material line
subject to the constraint of constant length [32].
Considering linear stability of the homogeneous isotropic
state subject to a shear flow disturbance uy�x� in the long-
wave limit, Stokes’s equation and the evolution equation
for �xy become �@xuy � �dc�xy and @t�xy � �1=5�@xuy.
Combining these shows that �xy evolves exponentially in
time with growth rate � � �dc=5�; for pullers, the shear
perturbation decays, while for pushers it grows, confirming
the simple physical argument given above. This result is
wavelength independent in the long-wave limit and illus-
trates a mechanism for generating long-range correlations
as seen in the full pusher simulations.

The qualitative differences we observe between pushers
and pullers naturally leads to the question of whether
different organisms have evolved their method of swim-
ming partially based on how significantly that method of
swimming enhances transport in the fluid. In addition to
biological systems, a number of artificial microswimmers
have recently been developed [33–37]. The impact shown
here of the mode of swimming on collective behavior
could be an important design criterion for future devices
of this kind.

We gratefully acknowledge support from NSF Grants
No. CTS-0522386 and No. DMR-0425880.

*Present address: Departamento de Materiales, Faculdad de
Minas, Universidad Nacional de Colombia, Medellin,
Carrera 80, #65-223, Bloque M3-050 Medellin, Colombia.

†Corresponding author.
graham@engr.wisc.edu

[1] E. Kunze et al., Science 313, 1768 (2006).
[2] A. W. Visser, Science 316, 838 (2007).
[3] N. H. Mendelson et al., J. Bacteriol. 181, 600 (1999).
[4] X.-L. Wu and A. Libchaber, Phys. Rev. Lett. 84, 3017

(2000).
[5] C. Dombrowski et al., Phys. Rev. Lett. 93, 098103 (2004).
[6] I. H. Riedel, K. Kruse, and J. Howard, Science 309, 300

(2005).
[7] A. Sokolov et al., Phys. Rev. Lett. 98, 158102 (2007).
[8] M. J. Kim and K. S. Breuer, Phys. Fluids 16, L78 (2004).
[9] T. Vicsek et al., Phys. Rev. Lett. 75, 1226 (1995).

[10] R. A. Simha and S. Ramaswamy, Phys. Rev. Lett. 89,
058101 (2002).

[11] K. Kruse et al., Phys. Rev. Lett. 92, 078101 (2004).
[12] I. S. Aranson et al., Phys. Rev. E 75, 040901(R)(2007).
[13] G. I. Taylor, Proc. R. Soc. A 209, 447 (1951).
[14] J. Lighthill, SIAM Rev. 18, 161 (1976).
[15] E. M. Purcell, Am. J. Phys. 45, 3 (1977).
[16] S. Nasseri and N. Phan-Thien, Comput. Mech. 20, 551

(1997).
[17] T. Ishikawa, M. P. Simmonds, and T. J. Pedley, J. Fluid

Mech. 568, 119 (2006).
[18] T. Ishikawa et al., Biophys. J. 93, 2217 (2007).
[19] J. P. Hernandez-Ortiz, C. G. Stoltz, and M. D. Graham,

Phys. Rev. Lett. 95, 204501 (2005).
[20] C. Stoltz, Ph.D. thesis, UW-Madison, 2006.
[21] I. Llopis and I. Pagonabarraga, Europhys. Lett. 75, 999

(2006).
[22] D. Saintillan and M. J. Shelley, Phys. Rev. Lett. 99,

058102 (2007).
[23] T. Ishikawa and T. J. Pedley, J. Fluid Mech. 588, 399

(2007).
[24] T. Ishikawa and T. J. Pedley, J. Fluid Mech. 588, 437

(2007).
[25] D. Bray, Cell Movements: From Molecules to Motility

(Garland, New York, 2001), 2nd ed.
[26] M. Allen and G. Germano, Mol. Phys. 104, 3225 (2006).
[27] J. P. Hernandez-Ortiz, J. J. de Pablo, and M. D. Graham,

Phys. Rev. Lett. 98, 140602 (2007).
[28] V. Mehandia and P. Nott, J. Fluid Mech. 595, 239 (2008).
[29] D. McQuarrie, Statistical Mechanics (Harper Collins,

New York, 1976).
[30] Our independent dipole theory gives a mean-squared

tracer velocity hv2
t i � C�0� � �2�ed

2kcut�=�5�
2�3‘3�,

where kcut 	 2�=‘ represents the characteristic wave
vector beyond which the point dipole theory is regular-
ized.

[31] D. Saintillan and M. J. Shelley, Phys. Rev. Lett. 100,
178103 (2008).

[32] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O.
Hassager, Dynamics of Polymeric Liquids, Kinetic
Theory Vol. 2 (Wiley, New York, 1987), 2nd ed..

[33] R. Ismagilov et al., Angew. Chem., Int. Ed. 41, 652
(2002).

[34] R. Golestanian, T. B. Liverpool, and A. Ajdari, Phys. Rev.
Lett. 94, 220801 (2005).

[35] R. Dreyfus et al., Nature (London) 437, 862 (2005).
[36] W. Paxton et al., Angew. Chem., Int. Ed. 45, 5420 (2006).
[37] T. Hogg, Auton. Agents Multi-Agent Syst. 14, 271 (2007).

PRL 100, 248101 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JUNE 2008

248101-4


