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The tiny difference between hard � pulses and their delta-function approximation can be exploited to
control coherence. Variants on the magic echo that work despite a large spread in resonance offsets are
demonstrated using the zeroth- and first-order average Hamiltonian terms, for 13C NMR in 60C. The 29Si
NMR linewidth of silicon has been reduced by a factor of about 70 000 using this approach, which also has
potential applications in magnetic resonance microscopy and imaging of solids.
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In magnetic resonance, a control pulse is hard if the
pulse amplitude is much greater than the spectral linewidth
and any resonance offset; hard pulses are often approxi-
mated as instantaneous delta functions [1–3]. The correc-
tions to this picture are quite small for a single hard pulse,
but they can lead to surprisingly large effects [4,5] in
important nuclear magnetic resonance (NMR) experiments
that use many � pulses, such as the Carr-Purcell-
Meiboom-Gill (CPMG) experiment [6,7]. CPMG uses a
train of identical � pulses with the same phase that are
equally spaced in time [1]. Despite this simple pattern of
pulses, coherent averaging theory [8] shows that the ze-
roth- and first-order correction terms arising from nonzero
pulse duration are quite complicated [4,5], making a quan-
titative prediction of their effects very difficult.

In this Letter, building upon our earlier results [4,5], we
design more complicated pulse sequences and show that
much simpler approximate Hamiltonians can quantita-
tively explain the experiments. This shows that the small
difference between hard � pulses and their delta-function
approximation can be put to good use, enabling new
classes of spin echoes which have promising applications
in NMR, magnetic resonance imaging (MRI) or MR mi-
croscopy of solids, and related spectroscopies.

The NMR data in Figs. 1–4 of this Letter were obtained
with powder samples [C60 or silicon doped with Sb
(1017=cm3)] at room temperature, in Bext � 12 T. Both
samples are well-approximated as a single species of spin
I � 1=2 nuclei (13C or 29Si), coupled together by the like-
spin dipolar interaction [4,5]. For a mesoscopic cluster of
N spins, the Hamiltonian in the rotating frame is H int �

H Z �H zz, where a net resonance offset (�net
z �

�global
offset ��loc

z ) gives rise to the Zeeman term H Z �PN
i �net

z Izi � �net
z IzT and the secular part of the homonu-

clear dipolar coupling [1–3] is H zz �
PN
j>i Bij�3IziIzj �

~Ii � ~Ij�. Our macroscopic powders are similar to an en-
semble of N spin clusters, with distinct �loc

z values in
different clusters due to bulk diamagnetism [5]. The result-
ing Zeeman line broadening dominates the spectrum’s full
width at half maximum (FWHM), which was only about
2 ppm [e.g., the 13C (29Si) spectrum’s measured FWHM �

260 �200� Hz, while the calculated dipolar FWHM �
38 �88� Hz]. The rf pulses used were unusually hard
[e.g., the pulse strength !1=2� � 25 �16:4� kHz was
about 100 (82) times the 13C (29Si) linewidth, with a
128.56 (101.56) MHz Larmor frequency [1]]. Low coil
filling factors [1] (<8% for 13C data and �40% for 29Si
data) made the rf pulses very uniform across the samples.

The open gray squares in Fig. 1(a) show the amplitude of
each peak in a long-lived train of spin echoes [9] generated
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FIG. 1 (color online). Sample C60. (a) Comparison of CPMG
(gray) to APCPMG (blue). Inserting a single flip-180Y pulse into
APCPMG induces an echo of the echo train (green). (b) Inserting
a single 180X (red) has no effect (blue). (c) Reversing the
APCPMG phase pattern 90X � f�Y; Yg

200 � fY;�Yg600 at the
point indicated has the same effect (black) as inserting a single
180Y pulse (green). (d) A CPMG of the echo train is induced by
using 90X � f�Y; Yg10 � �fY;�Yg20 � f�Y; Yg20�repeat. For (a)–
(d), � � 25 �s, �global

offset � 0, � � 0:71, and only the peak of
each echo is shown. The signals in Figs. 1–4 are normalized to
the amplitude of the C60 or Si:Sb FID signal.
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by the CPMG experiment 90X � fY; YgN, where the first
pulse is a 90	 rotation about the X axis in the rotating frame
[6,7]. The block fY; Yg, repeated N times, represents the
sequence ��� 180Y � 2�� 180Y � ��, where the 180	

rotations are about the Y axis, and echoes are acquired in
the 2� time interval after every 180	 (or �) pulse [1–3]. In
contrast, the train of spin echoes quickly decays to zero
[Fig. 1(a), blue] for alternating-phase CPMG (APCPMG)
90X � f�Y; YgN .

To understand this dramatic difference, we apply coher-
ent averaging theory [8] to the repeating block f�1; �2g,
with 180	 pulses of duration tp about the�1 or�2 axis and
cycle time tc � 4�� 2tp. Short tc is used throughout this
Letter, so it is a good approximation to keep just the first
two terms �H

�0�
� �H

�1� in the Magnus expansion [5]. The
fY; Yg block has [5] �H

�0�
fY;Yg � �H zz � �H yy 
 H,

while the f�Y; Yg block has a slightly different form:
�H
�0�
f�Y;Yg � H � ��net

z IxT , where � � 4�
tc

, � � tp
tc

, � �
4tp
�tc

, and H �� �
PN
j>i Bij�3I�iI�j �

~Ii � ~Ij� for � � x, y,
or z. The extra term ���net

z IxT looks like a constant
transverse field in the X direction, which, when acting
alone, causes spins to nutate [1] in the Y-Z plane in a
manner we define as clockwise (CW). Variation in �net

z
values across the macroscopic sample leads to a spread in
precession angles that causes signal decay. In the well-
known free induction decay (FID), T?2 arises from a spread
in �net

z of the original Zeeman Hamiltonian. By analogy,
the rapid decay of the spin echoes produced by 90X �
f�Y; YgN [Fig. 1(a), blue] can be thought of as an ‘‘FID
of the echo train.’’

Attempting to undo this T?2 -like decay, we insert a single
180Y pulse into the APCPMG sequence 90X �
f�Y; YgN1 � 180Y � f�Y; Yg

N2 , which produces a striking
‘‘echo of the echo train’’ [Fig. 1(a), green]. Although this
looks like a conventional Hahn echo [9], the signal actually
extends over more than 800 individual spin echo peaks.

The dephasing caused by ���net
z IxT (CW precession)

during the N1tc is followed by counterclockwise (CCW)
precession caused by ���net

z IxT , and this rephasing leads
to the echo of the echo train when N2 � N1. When a single
flip-180X is used instead, no echo of the echo train
[Fig. 1(b), red] is seen, as predicted by our model, because
a perfect rotation along the X axis does not change the sign
of the ���net

z IxT term. On the other hand, the echo of the
echo train [Fig. 1(c), black] is recovered if the flip-180X is
removed, and the phase pattern in the second repeating
block is reversed from f�Y; Yg to fY;�Yg, since [5]
�H
�0�
fY;�Yg � H � ��net

z IxT , compared to �H
�0�
f�Y;Yg � H �

��net
z IxT . In Fig. 1(c), the phase reversal of 1200 hard �

pulses yields a signal indistinguishable from that induced
by the single flip-180Y , as predicted by our model. In
contrast to this model, taking the limit of delta-function
pulses (tp ! 0) would kill [4,5] the transverse field terms

in �H
�0�
� �H

�1� exploited here and throughout the rest of
the Letter. Figure 1(d) shows that the approach of Fig. 1(c)
can be repeated, creating multiple echoes in the envelope
of individual spin echo peaks or a ‘‘CPMG of the echo
train.’’ However, the signal does decay, since the sign of the
term H is never reversed in Fig. 1. To beat this decay, we
use an approach inspired by the magic echo [1,10,11].

In the original magic echo [10–12], a continuous rf field
in the transverse plane picks out the part of the dipolar
coupling that is secular in the strong transverse field [1]. In
the f�X;Xg block [5], the effective field ��net

z IyT in

H �0�
f�X;Xg could play the same role, as first proposed by

Pines and Waugh [13] for a single value of �net
z . Figure 2

provides experimental support for their prediction, even
though the weakness of the effective transverse field
makes it hard to justify the second averaging analysis
[13,14]. In addition, the spread in �net

z across the
macroscopic sample has nontrivial consequences, as
shown by the different effects (Fig. 2) of the two bursts,
f�X;XgN � 90�X, followed by a free evolution of dura-
tion tfree. Using our model, the unitary operators

are e��i=@��H zz��net
z IzT �tfreee��i=@��

������
2 H zz���net

z IzT �NtcU90�X ,
where �X is the 90	 pulse phase and �> � for our
experiments [15].

For the �X choice, the Zeeman phase wraps in a CCW
manner both during and after the burst, which spoils the
magic echo that would otherwise form during the free
evolution period (Fig. 2, red). For the �X choice, both
Zeeman and dipolar terms switch from CW phase wrap-
ping in the burst to CCW phase unwrapping during the free
evolution period, resulting in a large echo (Fig. 2, blue).
This echo is not optimized, since the refocusing time is
different for the dipolar and Zeeman phases [tdipolar �

��� ��Ntc=2, tZeeman � �Ntc]. An optimized echo
(Fig. 2, green) is generated if we apply a 180Y at time tf1

�

�����2�
4 �Ntc after the failed sequence f�X;XgN � 90�X

(Fig. 2, red). This sequence aims to synchronize the refo-
cusing times of the dipolar and Zeeman phases by using the
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FIG. 2 (color online). Sample C60. Three experiments inspired
by the magic echo [10,11], which all start with f�X;XgN , have
distinctly different results. With 90�X following the repeating
block, no magic echo forms (red); with 90�X following the
repeating block, a large echo emerges (blue); when applying a
180Y pulse at time tf1

after the burst of the failed sequence (red),
an optimized echo is achieved (green). Here N � 200, � �
50 �s, �global

offset � 0, and � � 0:83.
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fact that a 180Y pulse flips the sign of the Zeeman term but
does not change the dipolar term. The measured echo
happens at a slightly different time, due to terms ignored
in this model [15].

Compared to the original magic echo [10,11], which
works best if �net

z � 0, sequences based on the f�X;XgN

block have several clear differences: Both Zeeman and
dipolar phases are wrapped during the burst, a 90�X is
used instead of the 90Y , and the 2� gaps in between the �
pulses of the f�X;Xg block simplify implementation.

The f�1; �2g blocks used so far have an effective
transverse field term in �H

�0�
f�1;�2g

. However, for the block

fX;Xg, �H
�0�
fX;Xg � �H zz � �H xx, and so the first trans-

verse field term is in �H
�1�
fX;Xg ���	�z�

2IxT�
�H
�1�;non�IxT
fX;Xg ,

where 	2 � tp�8�� 2tp�=�2tc@�� [5]. In principle, de-
spite its smaller size, the quadratic transverse field
term of �H

�1�
fX;Xg could be exploited just like the linear trans-

verse field term found in �H
�0�
f�X;Xg. In practice, however,

fX;XgN is a poor nutation experiment, since �H
�1�;non�IxT
fX;Xg

causes rapid signal decay. Inspired by the rotary echo
experiment [16], we tried replacing fX;XgN with
the composite block fX;XgN=2f�X;�XgN=2 because
�H
�0�
f�X;�Xg �

�H
�0�
fX;Xg and �H

�1�
f�X;�Xg � �

�H
�1�
fX;Xg [5],

and we managed to recover most of the original signal.
We thus infer [15] that the net effect of fX;XgN=2-
f�X;�XgN=2 is well-approximated by the much simpler

unitary operator e��i=@�
��1=2�H xx��	�net;�
z �2IxT��Ntc=2��

e��i=@�
��1=2�H xx��	�net;�
z �2IxT��Ntc=2�, where we allow for dif-

ferent �net;�
z during f�X;�XgN=2.

To test our model, we use phase-coherent fre-
quency jumping �net;�

z � �loc
z ��global

offset (�global
offset � 0)

during the burst fX;XgN=2f�X;�XgN=2 � 90Y , fol-
lowed by �global

offset � 0 during free evolution, leading
to [15] the unitary operator e��i=@��H zz��loc

z IzT �tfree�

e��i=@�
��1=2�H zz��2	2�global
offset
��loc

z IzT �NtcU90Y . Increasing �global
offset

increases the Zeeman dephasing during the burst, pushing
the quadratic echo peak out to larger values of tfree (Fig. 3,
green and black). The inset in Fig. 3 shows the strong
agreement between the Zeeman refocusing time predicted
by our model (black trend line) and the quadratic echo peak
measured in our experiments over a range of �global

offset . In
contrast, the corresponding linear sequence f�X;XgN=2-
fX;�XgN=2 � 90X has its largest signal just after the burst,
for all �global

offset (Fig. 3, blue and red), as predicted in our
model [15].

Controlling both dipolar and Zeeman phase wrapping
using �H

�1�
f�1;�2g

is an unusual aspect of the quadratic echo.
As one use of this, we designed a composite block with no
net dipolar evolution over a duration of 6�, ��� 
� �
90 1

� fX;XgN=2f�X;�XgN=2 � 90 2
� ��� 
�, which

we refer to as fN; 
;  1;  2g, with � � Ntc=4, j
j � �,
and  i � �Y for i � 1; 2. For constant �net

z , the unitary

operator is U180Y e
��i=@���net

z IzT ���2
� for  1 �  2 and
e��i=@���

net
z IzT ���2�� for  1 �  2 [15]. While similar effec-

tive operators were previously demonstrated [17] using
magic sandwich echoes for kH Zk � kH zzk, our ap-
proach works in the complementary regime kH Zk �
kH zzk, where the scales are calculated using kAk2 

Tr�AyA� [2,5]. In particular, the fN; 
;  1;  2g sequence is
still effective even when there is a large spread in �net

z

values across the sample [15].
Our model predicts that both Zeeman and dipolar phases

are refocused after each fN; 0;  1;  1g block, yielding a
time-suspension sequence [17]. Indeed, in Si:Sb, our se-
quence pushes the decay time from T?2 � 1:6 ms out to
Teffective

2 � 110 s, or about 1010 periods of Larmor preces-
sion [Fig. 4(a), blue], quite close to the spin-lattice relaxa-
tion time T1 � 290 s. The normal linewidth is thus reduced
by a factor of about 70 000 [Fig. 4(a), inset].

Eliminating dipolar dephasing in order to measure �net
z

in applied magnetic field gradients enables the MRI [17–
19] or MR microscopy [20] of solids. Measuring the spec-
trum in a field gradient is the first step toward imaging
using the back-projection technique [1,19]. Figure 4(b)
shows a faithful reproduction of an input top-hat spectrum,
where each spectrum is the Fourier transformation of the
pseudo-FID resulting from two interlaced data sets [15].
Note that both the signal amplitude and the �offset values
have been quite accurately reconstructed in this approach.
Compared to existing approaches for the MRI of solids
[17–19], our approach does not need to switch off the
applied Zeeman gradient inside the bursts, which enables
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FIG. 3 (color online). Sample C60. Using �net;�
z � �loc

z �

�global
offset , the quadratic echoes produced by fX;XgN=2-
f�X;�XgN=2 � 90Y � tfree, green (�offset � 0 Hz) and black
(�offset � �3 kHz), differ from the linear echoes produced by
f�X;XgN=2fX;�XgN=2 � 90X � tfree, blue (�offset � 0 Hz) and
red (�offset � �1 kHz), where �global

offset � �h�offset. Only the
black echo shifts to the right. Inset: Image plot of 31 quadratic
echoes for 0 Hz � �global

offset =h � 3 kHz, in steps of 100 Hz. The
black trend line shows our predicted Zeeman refocusing time.
Here N � 100, � � 10 �s, and � � 0:5.
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the application of large field gradients at moderate cost. It
should also be possible to implement standard frequency-
and phase-encoding methods using this approach [1,19].
Since pulse strength varies across a big sample, the uni-
form pulse assumption of our model is a potential concern.
Experimentally, an intentional uniform misadjustment of
all pulse angles leads to similar MRI top-hat line shapes
and to similar line-narrowing performance, suggesting that
these two sequences are robust [15].

Our sequences may help in the study of some important
biomaterials, since the H int assumed here is very similar
to that of 31P in bones and teeth [21,22]. Preliminary results
are encouraging [15]. These sequences also have potential
applications in proton (1H) NMR. While the dipolar line
breadth dominates most 1H spectra, a large �global

offset can be
used to reach the kH Zk � kH zzk limit of our model, as
demonstrated in our preliminary results on adamantane
[15]. Future work will use microcoils [23–25] to reach
shorter tc, which should improve the utility of our model
for proton NMR experiments.

Related effects can occur for a wider variety of H int and
H P� than we have treated here [5,15], provided that

H P�;H int� � 0. Shaped pulses, soft pulses, and strongly
modulated pulses have proven to be important elements of

the NMR toolbox. Exploiting the internal structure of hard
� pulses provides us with yet another technique to control
the coherent evolution of quantum systems.
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FIG. 4 (color online). (a) Sample Si:Sb. The 29Si time-
suspension data using the sequence 90X � f2; 0;�Y;�Yg

84 000,
with � � 60 �s, �offset � 2:5 kHz (blue), and corresponding
fitting curve (black), extend far beyond the normal 29Si FID
with �offset � 0 Hz (red). (a, inset) The 200 Hz normal spectrum
(red) is narrowed to 0.003 Hz (black, Fourier transformation of
the fitting curve), centered at �offset. (b) Sample C60.
Reproduction of a top-hat line shape using sequence 90X �
f2; t0;�Y;�Yg � f2; 0;�Y; Yg30, with � � 22 �s and t0 � 0.
Each trace is the measured spectrum of a pseudo-FID with
different �offset, for �4 kHz � �offset � �4 kHz in steps of
500 Hz, covering the range 2�j�offsetj=!1 � 16%. To obtain
this full bandwidth, the pseudo-FID interleaves a second data set
using the same sequence but with t0 � ��

�
2 �

1
2!1
�.

PRL 100, 247601 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JUNE 2008

247601-4


