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Frustrated antiferromagnets are important materials whose quantum Monte Carlo simulation suffers
from a severe sign problem. We construct a nested cluster algorithm which uses a powerful strategy to
address this problem. For the spin 1

2 Heisenberg antiferromagnet on a kagome and on a frustrated square
lattice the sign problem is eliminated for large systems. The method is applicable to general lattice
geometries but limited to moderate temperatures.
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Numerous strongly correlated electron materials are
governed by competing interactions. In particular, quan-
tum antiferromagnets such as NaxCoO2 � yH2O and
ZnCu3�OH�6Cl2 are geometrically frustrated. At present,
the theoretical understanding of such materials from first
principles is hindered by a very severe sign problem which
prevents the application of standard quantum Monte Carlo
methods. In this Letter we construct a nested cluster algo-
rithm that solves the sign problem and, for the first time,
allows us to simulate large frustrated antiferromagnets, at
least at moderate temperatures. This is very useful, for
example, for determining the couplings of frustrated mag-
nets by comparison with experimental finite temperature
data. To demonstrate the strength of the new method, we
apply it to the spin 1

2 Heisenberg antiferromagnet on ka-
gome and frustrated square lattices of sizes never reached
before in quantum Monte Carlo simulations of these
systems.

Efficient cluster algorithms performing nonlocal updates
were first developed by Swendsen and Wang for discrete
classical Ising and Potts spins [1] and then generalized by
Wolff [2] to classical spins with a continuous O�N� sym-
metry. Improved estimators which average over an expo-
nentially large number of configurations at polynomial cost
are an additional benefit of cluster algorithms. The first
cluster algorithm for the spin 1

2 quantum Heisenberg model
was developed in [3]. While that algorithm works effi-
ciently only for quantum spin chains, the loop-cluster
algorithm [4] is efficient also in higher dimensions, and
was first applied to the 2D spin 1

2 Heisenberg antiferromag-
net on a square lattice in [5]. The continuous-time variant
of the algorithm eliminates the Suzuki-Trotter time-
discretization error and can reach very low temperatures
[6]. This method has also been used to simulate systems on
very large lattices [7] and with very long correlation
lengths [8]. An elegant and powerful related method based
on stochastic series expansion is available as well [9].

Unfortunately, in many cases of physical interest, in-
cluding frustrated quantum spin systems, quantum
Monte Carlo calculations suffer from a very severe sign
problem. Using an improved estimator, the sign problem of

the 2D classical O�3� model at vacuum angle � � � has
been addressed with a variant of the Wolff cluster algo-
rithm [10]. In that case, some clusters are half-instantons
also known as merons. Flipping a meron cluster leads to a
sign change of the Boltzmann weight and hence to an exact
cancellation between two configurations. As a conse-
quence, only configurations without meron clusters con-
tribute to the partition function. Restricting the simulation
to those configurations eliminates the sign problem, since
all configurations in the zero-meron sector have a positive
sign. The meron concept has been generalized to fermionic
systems [11] and the meron-cluster algorithm has been
used to solve a number of very severe fermion sign prob-
lems [12–14]. Unfortunately, the meron-cluster algorithm
is not generally applicable. In fact, as shown in [15], some
sign problems are NP complete. Hence, a hypothetical
method that can solve any sign problem would solve all
NP-complete problems in polynomial time. This would
imply the equality of the complexity classes NP � P.
Since it is generally believed that NP � P, it is expected
that a universally applicable method that solves all sign
problems cannot exist.

Let us consider the antiferromagnetic spin 1
2 quantum

Heisenberg model with the Hamiltonian

 H �
X
x;y2�

Jxy ~Sx � ~Sy: (1)

Here ~Sx is a quantum spin operator located at the site x of a
lattice �, and Jxy > 0 is the antiferromagnetic exchange
coupling between a pair of spins located at the sites x and y.
Although our method can be applied directly in the
Euclidean time continuum, in order to ease its implemen-
tation we work in discrete time. Depending on the lattice
geometry, the Hamiltonian H � H1 �H2 � . . .�HM is
expressed as a sum ofM terms Hi which leads to a Suzuki-
Trotter decomposition of the partition function

 Z � Tr exp���H�

� lim
"!0

Tr�exp��"H1� exp��"H2� . . . exp��"HM��
N:

(2)

PRL 100, 247206 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JUNE 2008

0031-9007=08=100(24)=247206(4) 247206-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.247206


Here the inverse temperature � � 1=T � N" represents
the extent of a periodic Euclidean time interval, which is
divided into N discrete time steps of size ". Each Hi is a
sum of mutually commuting pair interactions hxy �

Jxy ~Sx � ~Sy on a set of disconnected bonds. Inserting com-
plete sets of spin states sx;t � 	

1
2 �" , # between the

factors exp��"Hi� in Eq. (2), the partition function is
expressed as a path integral over all spin configurations
�s� with the Euclidean action S�s� [5]

 Z �
X
�s�

Sign�s� exp��S�s��: (3)

The weight Sign�s� exp��S�s�� of a spin configuration �s�
is a product of contributions from individual space-time
plaquettes corresponding to the two-spin transfer matrix
elements hsx;tsy;tj exp��"hxy�jsx;t�1sy;t�1i. In the basis j""i,
j"#i, j#"i, j##i the two-spin transfer matrix reads

 exp��"hxy� � exp
�
"J
4

� A 0 0 0
0 A� B �B 0
0 �B A� B 0
0 0 0 A

0
BBB@

1
CCCA;

(4)

with A � exp��"Jxy=2� and B � sinh�"Jxy=2�. The off-
diagonal transfer matrix elements are negative. The prod-
uct of the negative signs over all space-time plaquettes
defines the total Sign�s� � 	1 of a spin configuration.
The remaining factor exp��S�s�� represents a positive
Boltzmann weight which can be interpreted as a probabil-
ity and thus can be used for importance sampling in a
Monte Carlo simulation.

When one samples the system using the positive weight
exp��S�s��, one must include Sign�s� in the measured
observables O�s� and expectation values are given by

 hOi �
1

Z

X
�s�

O�s�Sign�s� exp��S�s�� �
hOSigni�
hSigni�

: (5)

Here the index � refers to expectation values in the simu-
lated ensemble with positive Boltzmann weights and par-
tition function Z� �

P
�s� exp��S�s�� such that

 hSigni� �
1

Z�

X
�s�

Sign�s� exp��S�s��

�
Z
Z�

 exp���f�V�: (6)

Here V is the spatial volume and �f is the difference
between the free energy densities of the original ensemble
with the weight Sign�s� exp��S�s�� and the simulated en-
semble with the positive weight exp��S�s��. The expecta-
tion value of the sign is exponentially small in the space-
time volume �V. Since it is obtained as a Monte Carlo
average of contributions Sign�s� � 	1, one needs an ex-
ponentially large statistics in order to accurately measure

hSigni�. This is impossible in practice and gives rise to a
very severe sign problem.

How can one increase the statistics by an exponential
factor without investing more than a polynomial numerical
effort? The meron-cluster algorithm [10,11] achieves this
by constructing an improved estimator for the sign. Like
the meron-cluster algorithm, the method presented here is
based on the loop-cluster algorithm [4] which decorates a
spin configuration with bonds connecting spins to closed
loop clusters. The four spins on a space-time plaquette are
connected in pairs. In fact, A and B in Eq. (4) represent
weights of two possible bond configurations on a space-
time plaquette. The weight A corresponds to bonds con-
necting the spins sx;t and sy;t with their timelike neighbors
sx;t�1 and sy;t�1, while B corresponds to spacelike bonds
connecting sx;t with sy;t and sx;t�1 with sy;t�1. Sites con-
nected by bonds form a closed oriented loop cluster. Up to
an overall spin-flip of the entire cluster, the spin configu-
ration on a cluster is determined by the cluster geometry.
Timelike bonds connect parallel spins, while spacelike
bonds connect antiparallel spins. Integrating out the spins,
the partition function can be expressed as a sum over bond
configurations �b�

 Z �
X
�b�

Sign�b�AnABnB2NC : (7)

Here nA is the number of timelike and nB is the number of
spacelike plaquette breakups, while NC is the number of
loop clusters. The factor 2NC arises because each cluster has
two possible spin orientations. The partition function can
be sampled by a Metropolis update of the plaquette break-
ups. Remarkably, while the original cluster algorithm
which operates on spins and bonds never changes the
sign and is thus not ergodic [16], the algorithm which
operates only on bonds (after the spins have been inte-
grated out) is ergodic and still avoids unnatural freezing.
Interestingly, Sign�s� remains invariant under cluster flips;
i.e., all clusters are nonmerons. However, in this case the
meron-cluster algorithm does not solve the sign problem
because almost half of the configurations in the zero-meron
sector have a negative sign [16]. Since it does not change
under spin flips, Sign�s� � Sign�b� is uniquely determined
by the bond configuration. It is important to note that the
sign can be expressed as a product of cluster signs
Sign�b� �

Q
CSignC. Depending on the orientation of a

cluster, each spacelike breakup contributes a factor 	i to
the two clusters traversing the corresponding space-time
plaquette. By construction, each cluster traverses an even
number of spacelike breakups, and hence SignC � 	1.

We distinguish space-time plaquettes shared by two
different clusters from internal plaquettes belonging en-
tirely to one cluster. Updating the breakup on a space-time
plaquette shared by two different clusters does not lead to a
sign change. Only updates of cluster-internal plaquettes
may change the sign. We apply the following method to
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construct an improved estimator for the sign. Once a
statistically independent bond configuration has been pro-
duced by the cluster algorithm, we perform an inner
Monte Carlo simulation by updating only the cluster-
internal plaquette breakups. Each cluster C defines the set
of lattice sites �C contained in C. The inner Monte Carlo
algorithm generates clusters with different orientations that
visit all sites of �C in different orders, thus contributing
different values of SignC. In this process, breakups that lead
to the decomposition of �C into separate clusters must be
rejected. The inner Monte Carlo algorithm estimates an
average hSignCii for each set of sites �C. Since the different
sets are independent, the improved estimator of the sign is
given by

 hSignii �
Y
�C

hSignCii: (8)

Remarkably, the nesting of an outer and an inner cluster
algorithm achieves exponential error reduction at a cost
linear in the volume (as long as the cluster size remains
fixed). A similar strategy was very successfully applied to
the measurement of exponentially suppressed Wilson
loops in lattice gauge theory [17] as well as to quantum
impurity models [18]. Correlation functions and suscepti-
bilities can also be measured with improved estimators. Let
us consider the staggered magnetization operator ~Ms �P
xzx ~Sx. Here zx is a stagger factor depending on the

sublattice to which the site x belongs. The corresponding
staggered susceptibility

 �s �
hM2

sSigni�
�VhSigni�

�
hhM2

sSigniii�
�VhhSigniii�

(9)

is obtained from an improved estimator which is given in
terms of Ms �

P
CMsC with MsC �

P
�x;t�2Czxsx;t as

 hM2
sSignii �

X
�C

hM2
sCSignCii

Y
�C0��C

hSignC0 ii: (10)

In which cases will the nested cluster algorithm elimi-
nate or at least substantially reduce the sign problem?
Since some sign problems are NP hard, it is expected
that any method will fail at least in those cases. The nested
cluster algorithm fails to solve the sign problem when a
cluster fills almost the entire volume, because then the
inner Monte Carlo algorithm becomes inefficient. Since
large clusters necessarily arise in the presence of large
correlation lengths, the nested cluster algorithm does not
work efficiently in low-temperature ordered phases.

Even in the absence of long-range order, cluster algo-
rithms may become inefficient if the clusters grow to
unphysically large sizes beyond the physical correlation
length. This potential problem is prevented when there is a
reference configuration that limits cluster growth [14]. For
the antiferromagnet on the square lattice the reference
configuration is given by the classical Néel state; i.e., all
spins in a loop cluster are in a staggered pattern. The

cluster size squared is then tied to the staggered suscepti-
bility which protects the clusters from growing to unphysi-
cally large sizes. Also for frustrated systems it is natural to
consider a classical ground state as a reference configura-
tion. When one quantizes the spins along a local quantiza-
tion axis in the direction of the spin orientation in the
classical ground state, an interesting algorithm with open
string clusters emerges. The spins in each cluster are in the
reference configuration and hence these clusters are pro-
tected from becoming unphysically large. However, the
meron concept does not apply to the open string clusters;
i.e., when these clusters are flipped, they are not indepen-
dent but affect each other in their effect on the sign. As will
be explained elsewhere, one can still integrate out the spins
analytically. This glues the open string clusters together to
the closed loop clusters of the algorithm discussed before.
While typical closed loop clusters are hence larger than the
correlation length corresponding to the classical order, they
still represent physical correlated regions. In fact, they
grow up to the length scale at which the signs, which are
a manifestation of quantum entanglement, decorrelate.

Even if the typical cluster size is moderate, the inner
Monte Carlo algorithm may not lead to an efficient can-
cellation of signs. For example, there are cases in which the
improved estimator hSignii is not positive. Still, if such
cases are rare, the sign problem is substantially reduced. To
optimize the performance of the algorithm, the numerical

FIG. 1. Kagome lattice (left) and frustrated square (or aniso-
tropic triangular) lattice (right) consisting of three sublattices A,
B, C.
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FIG. 2. Probability distribution of hSignii for the kagome lat-
tice with V � 576 spins and �J � 1.
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effort invested in the inner and outer Monte Carlo proce-
dures must be properly balanced against each other. It pays
to invest a larger number of inner Monte Carlo sweeps on
the larger sets �C. In any case, the efficiency of the nested
cluster algorithm must be investigated on a case-by-case
basis.

We now consider the Heisenberg antiferromagnet with
uniform nearest-neighbor coupling Jxy � J on the lattices
illustrated in Fig. 1. The frustrated square lattice has an
additional coupling J0 along the diagonals. We have simu-
lated large kagome lattices with up to V � 1000 spins at
moderate temperatures with �J � 1. Figure 2 shows the
probability distribution of the improved estimator hSignii.
Although sometimes it is negative, it still leads to an
accurate determination of the average sign. We consider
Ms with zx � 1, �1, 0 on sublattice A, B, C, respectively,
which may signal coplanar spin order. As shown in Fig. 3,
with increasing volume V both hSigni� and hM2

sSigni�

decrease dramatically over numerous orders of magnitude,
but are still accurately accounted for by the nested cluster
algorithm. For example, with V � 882 spins hSigni� �
2:09�8� � 10�14. A brute force approach would require an
astronomical statistics of about 1030 sweeps in order to
achieve a similar precision. Figure 4 shows the coplanar
staggered susceptibility �s compared to the collinear Néel
susceptibility �N . On the square lattice, frustration reduces
the Néel order, while (at least for J0 � J=4) the coplanar
order is as weak as on the kagome lattice (and practically
indistinguishable from it in Fig. 4).

To conclude, in contrast to other Monte Carlo methods,
the nested cluster algorithm is capable of eliminating very
severe sign problems for large systems, at least at moderate
temperatures. As we have demonstrated, by studying ap-
propriate susceptibilities one may obtain valuable insights
concerning possible types of order. Applications to frus-
trated antiferromagnets on various lattice geometries are
currently in progress.
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FIG. 3 (color online). Volume-dependence of hSigni� and
hM2

sSigni� (rescaled by 10�6) for the kagome lattice with
�J � 1.
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