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The effect of strong long-range disorder on the quantization of the Hall conductivity �xy in graphene is
studied numerically. It is shown that increasing Landau-level mixing progressively destroys all plateaus in
�xy except the plateaus at �xy � �e2=2h (per valley and per spin). The critical state at the Dirac point is
robust to strong disorder and belongs to the universality class of the conventional plateau transitions in the
integer quantum Hall effect. We propose that the breaking of time-reversal symmetry by ripples in
graphene can realize this quantum critical point in a vanishing magnetic field.
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Graphene, an isolated layer of graphite [1], displays a
remarkable quantization of the Hall conductivity �xy when
subjected to a magnetic field. As shown in Refs. [2,3], �xy
is measured to be either a negative or a positive half-integer
n� 1=2 in units of 4e2=h. This should be contrasted with
the usual integer quantum Hall effect (IQHE) for which
quantum Hall plateaus of the Hall conductance in a Si
metal oxide semiconductor field-effect transistor or in
GaAs=AlGaAs heterojunctions occur at positive integer
values n in units of e2=h [4]. In the vicinity of the two
nonequivalent corners K and K0 of the first Brillouin zone
of graphene, the noninteracting electronic dispersion is
linear; i.e., at the so-called Dirac point it realizes a non-
interacting massless Dirac Hamiltonian. As the Hall con-
ductivity of a massive two-component Dirac fermion in
(2� 1)-dimensional space and time has long been known
to be a half-integer in units of e2=h [5,6], the observed
quantization of the Hall conductivity of graphene can be
attributed to four independent flavors of two-component
Dirac fermions with the spin-degeneracy accounting for
two and the valley-degeneracy accounting for another two
flavors.

This explanation fails to account for Anderson localiza-
tion due to disorder in graphene, as recently emphasized in
Ref. [7]. Disorder can introduce both intervalley and intra-
valley scattering between the Bloch states in the valleys
centered at K and K0 [8–10]. The physics of localization
for the Bloch (Landau) states of graphene is predicted to
depend sensitively on the nature of the disorder and, in
particular, on the range of the spatial correlations of the
impurities. When disorder is short-ranged, intervalley scat-
tering has large matrix elements. In this case, all Bloch
states are localized at zero magnetic field [8], while the
IQHE is wiped out by a sufficiently strong disorder [9]. On
the other hand, when disorder is sufficiently long-ranged,
intervalley scattering is negligible, and the metallic phase

remains stable to disorder if time-reversal symmetry is
present [11–14].

As for the conventional IQHE, the quantization of the
Hall conductivity in graphene requires the existence of at
least one critical state in each impurity-broadened Landau
level (LL) induced by a magnetic field. The destruction of
the quantum Hall plateaus in the conventional IQHE with
increasing disorder strength [15,16] can be understood in
terms of a critical state in a disorder-broadened LL migrat-
ing (levitating) to higher filling fraction as soon as the
disorder induces significant LL mixing [17]. The same
phenomenon has been shown to be operative for all
impurity-broadened LLs in graphene when the disorder is
short-ranged [9].

In this Letter, we argue on the basis of numerical calcu-
lation that, when the disorder is sufficiently long-ranged,
all but one critical states in graphene undergo levitation as
the disorder strength increases. The exception is the state at
the Dirac point that remains critical whatever the disorder
strength is. Consequently, graphene with long-range dis-
order has the remarkable property that the quantum Hall
plateaus with �xy � �e2=2h per spin and per valley sur-
vive in the limit of strong disorder. In the language of the
renormalization group, the scaling flows of the longitudinal
(�xx) and transverse (�xy) conductivities for graphene with
strong infinite-range disorder are determined by two at-
tractive fixed points at �xy � �e2=2h and one repulsive
fixed point at �xy � 0. For comparison, the corresponding
phase diagram for graphene with strong short-range disor-
der is conventional in that it is characterized by a single
attractive fixed point, the insulating phase with �xx �
�xy � 0 [9,10]. Of course, the range of the disorder is
always finite in a sample of graphene [18]. However, the
characteristic scattering length induced by short-range im-
purities could be longer than the phase coherence length
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for some range of temperature. Indeed it has been found,
on a sample of graphene with a high mobility (� ’ 2�
104 cm2=V s), that the longitudinal conductivity at the
Dirac point at zero magnetic field never falls with decreas-
ing temperature down to 10 mK [19]; i.e., intervalley
scattering is irrelevant in this range of temperature.

The honeycomb lattice of graphene has two atoms per
unit cell on sites labeled A and B. Linearization of the
noninteracting lattice Hamiltonian in the clean limit, ignor-
ing the spin degrees of freedom, yields [1]

 H :�
H K 0

0 H K0

� �
;

H K � vF� � ��i@r� eA	;

(1)

where H K0 is the transpose of H K, vF is the Fermi
velocity at the Dirac point, and the Pauli matrices � act
on the sublattice degrees of freedom. In a finite magnetic
field B � r�A � 
0; 0; B� the spectrum of H K consists
of LLs with eigenvalues En � sgn
n�@!0

������
jnj

p
with n 2 Z

[20]. The energy and length scales are set by !0 ����
2
p
vF=‘B and ‘B �

�����������
@=eB

p
. The filling fraction � > 0

(� < 0) is the ratio of the number of occupied (empty)
states above (below) the Dirac point to the LL degeneracy.

In this work, as we neglect intervalley and spin-
dependent scattering channels, every LL is fourfold de-
generate. The problem of Anderson localization that we
shall consider is defined by the random Dirac equation
�H K � V
r�	 � " with the static vector potential in
the Landau gauge A � 
0; Bx; 0� and V a random static
scalar potential. We choose two-dimensional space to be a
square with area L2. We introduce a cutoff nc � 9 for the
LLs. The disorder potential is V
r� �

PNimp

j�1 uj exp
�jr�

Rjj
2=2d2�=
2�d2� with r 2 R2, d a length scale, and

u=d2 � jujj=d
2 an energy scale. The signs in uj � �u

and the scattering centers Rj are chosen randomly and
independently at Nimp locations. The disorder strength is
estimated to be the broadening of the LLs �2=4 �
2�u2Nimp=�
‘2

B � 2d2�L2	 within the self-consistent Born
approximation [15]. In the following we set d � 0:7lB.

We evaluate the transverse conductivity with the Kubo
formula

 �xy � �
@e2

L2

X
"m<"F<"n

�
Im�hmjvxjnihnjvyjmi	


"m � "n�2

�
; (2)

where jni denotes an eigenstate with its eigenvalue "n of
Hamiltonian H K � V
r�, the corresponding velocity op-
erator is v :� vF�, and the overline represents disorder
averaging. The dependence of the disorder-average Hall
conductivity �xy on the filling fraction is shown in Fig. 1
for three values of the dimensionless disorder strength. For
small LL mixing induced by the disorder, we observe that
the curve (a) has plateaus centered at half-integer values
and with rounded corners up to � � �
nc � 1=2�. There
are fewer well-defined Hall plateaus at moderately strong

disorder strength as shown in the curve (b). Only the
plateaus centered at � � �1=2 are seen in the curve (c)
when the disorder is strong relative to @!0. The size
dependence of �xy at strong disorder (c) shown in the
lower inset of Fig. 1 is consistent with the expectation
that �xy has a step at � � 0 in the L! 1 limit. The
quantization of �xy=
e2=h� for all half-integers larger in
magnitude than 1=2 correlates with an oscillatory depen-
dence on the energy of the disorder-average density of
states (DOS) as is illustrated with the upper inset of
Fig. 1. This correlation is not present for the plateaus at
� � �1=2. LL mixing induced by the disorder is thus
responsible for the disappearance of all Hall plateaus
with j�xyj> e2=2h while the plateaus at � � �1=2 are
robust to strong disorder.

We now turn our attention to the dissipative component
of electrical transport by studying the Thouless number
gT � hj�"ji=�". The Thouless energy �" is the energy
shift induced on energy eigenvalues by using antiperiodic
instead of periodic boundary conditions [15]. The mean
level spacing is �" � 1=�L2�
"�� with �
"� the DOS. The
angular brackets denote the typical value h�"i �
exp
ln�"�. The dependence of gT on � at different values
of L=‘B is shown in Fig. 2 for weak (a), moderate (b), and
strong (c) disorder strength. We observe a decrease of the
Thouless number with the deviations of the filling fraction
from the integer values n, which is well correlated with the
oscillatory dependence of the DOS in Fig. 1. This decrease
gets more pronounced the closer n is to n � 0. Local
minima of the Thouless number are reached at half-integer
filling fractions. At fixed filling fraction, gT generally
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FIG. 1 (color online). Disorder-average Hall conductivity �xy
as a function of the filling fraction � for the dimensionless
disorder strength (a) �=@!0 � 0:4, (b) 0.7, and (c) 1.1. Upper
inset: Disorder-average density of states (DOS). Lower
inset: Size dependence of �xy at �=@!0 � 1:1.
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decreases as the system size L=‘B increases, while only at
the center of an impurity-broadened LL it is independent of
L=‘B. This is consistent with the existence of a critical
state close to integer filling fractions. The decrease of gT
gets more pronounced when approaching half-integer fill-
ing fractions. Increasing disorder strength as shown in
Figs. 2(b) and 2(c) weakens the dependence of gT on
both � and L=‘B around all half-integer filling fractions
larger than 1=2. A decrease of gT remains clearly visible at
� � 1=2 for strong disorder.

For any filling fraction, a localization length � is ex-
tracted from the fit gT
L� � g0 exp
�L=�� and 1=� is
plotted in Fig. 3(a) for weak, moderate, and strong disor-
der. Figure 3(a) is consistent with an oscillatory depen-
dence of � on � that correlates with the DOS in Fig. 1 and
also shows that � increases for � > 1 with disorder strength
�=
@!0�. The latter feature is familiar in the conventional
IQHE, where the LL mixing makes the localization weaker
in the high-field regime [15]. In each impurity-broadened
LL of Fig. 3(a), there exists a � for which � takes a
maximum and much larger value than L. This � corre-
sponds to a local maximum of gT and to a critical single-
particle state. In the limit of no LL mixing, critical states
are found at integer values of �. Figure 3(b) shows that all
but one critical states are increasing functions of j�j as the
amount of LL mixing induced by the disorder increases.
The exception is the � � 0 critical state that remains
pinned to the Dirac point for all disorder strength in
Fig. 3(b). Consequently in the weak magnetic field limit
@!0=�! 0 all single-particle states in the hole (electron)
regime are localized: �xy=
e2=h� � � 1

2 (�1
2 ) with the step

discontinuity in �xy occurring at � � 0. This behavior is
different from the one for the conventional IQHE systems

where �xy ! 0 (Hall insulator) in the weak magnetic field
limit [15,16]. It is also different from the one observed in
numerical studies of the effects of short-range correlated
disorder on the IQHE in graphene [9], which reported
strong localization behavior in the vicinity of � � 0 over
a wide range of magnetic field. This difference can be used
to distinguish whether the dominant source of disorder in
graphene is short- or long-range. For � close to � � 0 and
from weak to strong disorder, Fig. 3(c) is consistent with
the scaling ansatz�xy�fxy
L1=���� and gT � fxx
L

1=����
with �� 
 2:3. Correspondingly, 1=�� j�j�� , 1=
�T�� �
L�� where �T� is the half-width of the peak of gT at � �
0, and d�xy=d�� L�� with �� � 1=��. Moreover, gT �
fxx�f

�1
xy 
�xy�� must hold close to � � 0, a prediction con-

firmed by the scaling flow in Fig. 3(d), where (�xy; gT)
computed at L � 15, 25, and 35 are seen to move towards
the attractive fixed points at (�e2=2h; 0) with increasing L.

The phase boundary separating the quantum Hall phases
�xy � �e2=2h from�xy � �e2=2h in Fig. 3(b) extends to
the zero-magnetic field limit @!0=�! 0. This strongly
suggests that the Dirac point is never localized by long-
range disorder, however strong the disorder is. The Dirac
point of graphene with long-range disorder remains the
critical point of the IQHE plateau transition for any weak
magnetic field.

We close this Letter by studying the effects of effective
time-reversal symmetry breaking random perturbation on
the zero-magnetic field limit @!0=�! 0 of the Dirac
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FIG. 3 (color online). (a) Dependence on � of the inverse
localization length 1=�. (b) The phase diagram for the quantum
Hall effect of massless Dirac fermions. For each impurity-
broadened LL, the phase boundaries are identified from the
L-independent gT (circles). Half-integers indicate ��xy=
e2=
h�. (c) Widths of the half-maxima of the Thouless conductance
(closed symbols) and the slope of the Hall conductivity (open
symbols) as functions of L. (d) Scaling flow in �xy � gT plane:
�xy and gT at L=‘B � 15 (�), 25 (�), and 35 (5) are plotted.

g T
g T

g T
(a)

(b)

(c)

L= 15lB

L= 25lB

L= 35lB

 0.0001

 0.01

 1
 0  1  2  3  4

 0.1

1

 0.1

 1

 0  1  2  3  4

FIG. 2. The Thouless conductance gT as a function of the
filling fraction � when (a) �=@!0 � 0:4, (b) 0.7, and (c) 1.1,
for various system sizes, L=‘B � 15 (�), 25 (�), and 35 (5).
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Hamiltonian (1). The random single-particle Dirac
Hamiltonian is [6]

 H :� � � ��i@vFr� a
r�	 �m
r��z � V
r�; (3)

where a
r�, m
r�, and V
r� are Gaussian distributed with
the covariances f�
q�f�
q0�������exp
�q2d2=2��
q�
q0�, if 
f��0;1;2;3� � 
V; a1; a2; m� whereby �� � �V for
� � 0, �� � �A for � � 1; 2, and �� � �M for � � 3.
The length scale d is the range of the potential that varies
up to 1=30 of the minimal system size. The ‘‘random
vector potential’’ a
r� describes the effect of ripples in
corrugated graphene [21,22]. Ludwig et al. in Ref. [6]
conjectured that the random Dirac Hamiltonian (3) flows
into the critical point describing the quantum Hall plateau
transition. Using the numerical method from Ref. [14], we
present in Fig. 4 the 	 function 	
g� for the Kubo con-
ductivity g � �xx=
e2=h� which we fit against 	
g� �
�1=
2�2g2� �D exp
�2�g� [4] whenever time-reversal
symmetry is broken (�i�yH �i�y � H ) by either �A >
0 or �M > 0. The fitting parameter D is optimized when
D � 7. Figure 4 is consistent with a fixed point at g ’ 0:6
which is attractive in g. The	 function in the limit �A;M !
0 with fixed �V > 0 is always positive (open circles in
Fig. 4), as reported in Refs. [13,14]. This limit is equivalent
to the limit @!0=�! 0 in Eq. (1). Both limits induce a
crossover from the unitary class with a topological term to
the symplectic class with a topological term [11,12]. This
is different from the limit @!0=�! 0 in the conventional
IQHE that realizes a crossover from the unitary class with a
topological term to the orthogonal class. The fact that the
orthogonal class is always insulating in two dimensions
thus causes all critical states to levitate to large � as
@!0=�! 0 [15,16].

We conclude by pointing out the interesting possibility
that ripples in graphene alone can realize scaling flows to
the IQHE plateau transition point even in the absence of a
magnetic field; i.e., graphene with long-range disorder is
very close to the quantum critical point of the IQHE. This
scenario is consistent with recent low-temperature trans-
port measurements of high-mobility graphene samples that
imply a temperature independent minimal conductivity
[2,19].
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