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We describe an occupation-number-like picture of fractional quantum Hall states in terms of poly-
nomial wave functions characterized by a dominant occupation-number configuration. The bosonic
variants of single-component Abelian and non-Abelian fractional quantum Hall states are modeled by
Jack symmetric polynomials (Jacks), characterized by dominant occupation-number configurations
satisfying a generalized Pauli principle. In a series of well-known quantum Hall states, including the
Laughlin, Read-Moore, and Read-Rezayi, the Jack polynomials naturally implement a ‘‘squeezing rule’’
that constrains allowed configurations to be restricted to those obtained by squeezing the dominant
configuration. The Jacks presented in this Letter describe new trial uniform states, but it is yet to be
determined to which actual experimental fractional quantum Hall effect states they apply.
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The Laughlin wave function [1] has provided the key to
understanding the physics of the fractional quantum Hall
(FQH) effect: It accurately models the simplest Abelian
FQH states and is the building block of model wave
functions for more general states, both Abelian and (using
cluster projections) non-Abelian ones, such as the Moore-
Read [2] and Read-Rezayi [3] states. Apart from trivial
(Gaussian) factors which we will drop, such model wave
functions are conformally invariant multivariable polyno-
mials  �z1; . . . ; zN�; despite their explicit availability, ana-
lytic calculations of correlation functions and other
physical properties have not so far been possible because
of the intractability of their expansions in the noninteract-
ing basis of occupation-number states (Slater determinants
or monomials). The simplest physically relevant model
FQH states are antisymmetric polynomials, describing
spin-polarized electrons in a partially filled Landau level
with no internal ‘‘pseudospin’’ degrees of freedom, but it is
also useful to study symmetric (bosonic) FQH wave func-
tions from which they are obtained by multiplication by
odd powers of the Vandermonde determinant.

In this Letter, we describe a unified occupation-basis
framework for the description of many model one-
component FQH states in terms of the Jack symmetric
polynomial(s) [‘‘Jack(s)’’] [4]. The Jacks naturally imple-
ment a type of ‘‘generalized Pauli principle’’ on a general-
ization of Fock spaces for Abelian and non-Abelian
fractional statistics [5]. We note that (bosonic) Laughlin,
Moore-Read, and Read-Rezayi wave functions (as well as
others, such as the state that Simon et al. [6] have called the
‘‘Gaffnian’’) can be explicitly written as Jack symmetric
polynomials, which have known (recursively defined) ex-
pansions in monomials (free-boson occupation-number
states), and have rich algebraic properties. These uniform
FQH condensate wave functions can be obtained by requir-
ing that a Jack simultaneously obeys highest-weight (HW,
absence of quasiholes) and lowest-weight (LW, absence of
quasiparticles) conditions. The Jacks described in the

present Letter also provide new FQH wave functions at
arbitrary fillings � � k

r , with k and r integers. The gener-
alized Pauli principle and the wave functions introduced
here allow for: counting of the dimension of n-quasihole
Hilbert space; degeneracy on the torus; specific heat cal-
culations; and electron and quasihole propagators on the
edge of the liquid. It is now known [7] that some of the
Jacks (e.g., at filling � � 2=5 or 3=7) have very good
overlap >0:95 with the Coulomb ground state and the
composite Fermion wave function [8] for up to 15 particles.

Jacks J�� �z� are symmetric polynomials in z �
fz1; z2; . . . ; zNg, labeled by a partition � with length ‘� �
N, and a parameter �; � can be represented as a (bosonic)
occupation-number configuration n��� � fnm���; m �
0; 1; 2; . . .g of each of the lowest Landau level orbitals
�2�m!2m��1=2zm exp��jzj2=4� with angular momentum
Lz � m@ (see Fig. 1), where, for m> 0, nm��� is the
multiplicity of m in �. When �! 1, J�� ! m�, which is
the monomial wave function of the free-boson state with

Squeezing Rule

FIG. 1 (color online). Upper half: The Landau problem on a
disk. The occupation basis provides for the number of particles
nm in the orbital of angular momentum m. Lower half: Examples
of occupation to monomial basis conversion and squeezing rule.
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occupation-number configuration n���; a key property of
the Jack J�� is that its expansion in terms of monomials
contains only terms m�, where �< � means the partition
� is dominated by � [4]. Jacks are also eigenstates of a
Laplace-Beltrami operator H LB��� given by
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We note that the bosonic Laughlin state  �r�L at filling
� � 1=r, r even, is a Jack polynomial:

  �r�L �
YN
i<j

�zi� zj�r � J
�1;r

�0�1;r�
�z�; �k;r ��

k� 1

r� 1
; (2)

which is the k � 1 case of a Jack defined for any positive
integer k so that N � k �N, and nm��0�k; r�� � k for m �
�j� 1�r, j � 1; 2; . . . ; �N, with nm � 0 otherwise. Note
that �0�k; r� is the ‘‘�k; r; N�-admissible’’ partition [9]
that minimizes j�j � M �

P
mmnm at fixed N [� is

�k; r; N�-admissible if n��� obeys a generalized Pauli prin-
ciple where, for all m � 0,

Pr
j�1 nm�j�1 � k, so r con-

secutive ‘‘orbitals’’ contain no more than k particles]. Note
that here the Jack parameter �k;r is a negative rational;
study of symmetric Jacks of this type was recently initiated
in Ref. [9]. Earlier work generally assumes that � is a
positive real (Jacks with real �> 0 and unrestricted �
occur in the solution of the integrable Calogero-
Sutherland model [10]). Nonsymmetric Jack polynomials
can also describe spin-fractional quantum Hall effect wave
functions such as Halperin and Haldane-Rezayi [11].

It is straightforward to see that  �r�L is a Jack: It has the
obvious property that it is annihilated by operators

 DL;r
i �

@
@zi
� r

X0

j��i�

1

zi � zj
; DL;r

i  �r�L � 0: (3)

It is then also annihilated by the combinationP
iziD

L;�1
i ziD

L;r
i , which is equal to H LB��1;r� minus a

constant (found by direct calculation to be 1
12 rN�N � 1�	


N � 1� 3r�N � 1��), so  �r� is an eigenstate of
H LB��1;r�. It is now easy to identify the dominant con-
figuration n��0

1;r� and verify that the eigenstate is non-
degenerate, confirming Eq. (2). For r � 2, this also fol-
lows implicitly from Ref. [9], where it was shown that the
set of Jacks with parameter �k;2 and �k; 2; N�-admissible �
is a basis for the space of symmetric polynomials that
vanish when k� 1 variables zi coincide. The space of
symmetric polynomials space can be divided into subspa-
ces of fixed M � j�j, and, for j�j � �0

k;r, there is a single
�k; r; N�-admissible partition, so a polynomial with the
appropriate properties is unique and must be a Jack.

It is useful to identify the ‘‘dominance rule’’ (a partial
ordering of partitions � > �) with the ‘‘squeezing rule’’
[10] that connects configurations n��� ! n���: Squeezing
is a two-particle operation that moves a particle from
orbital m1 to m01 and another from m2 to m02, where m1 <
m01 � m02 <m2 and m1 �m2 � m01 �m

0
2; � > � if n���

can be derived from n��� by a sequence of squeezings (see
Fig. 1). This means that when model FQH wave functions
equivalent to Jacks are expanded in basis of occupation-
number states, only configurations obtained by squeezing
from a dominant configuration will be present (this crucial
property persists in fermionic model FQH wave functions
given by the product of a Jack with a power of the
Vandermonde determinant).

Jacks can be normalized so that

 J�� � m� �
X
�<�

v�����m�: (4)

The coefficients v����� are (recursively) known [12]; they
are finite and real positive for real �> 0 and are holomor-
phic functions of � except for poles at a ��;��-dependent
set of negative rational values [9]. Feigin et. al. [9] proved
that, for the �k; r; N�-admissible partitions, v����� is ana-
lytic at �k;r, and the set of admissible Jacks with this
parameter forms a basis of a differential ideal Ik;rN in the
space of symmetric polynomials. This requires that �k� 1�
and �r� 1� (but not necessarily k and r) be coprime. For
the case r � 2, and k integer, these polynomials are a basis
for the � � k=r � k=2 bosonic non-Abelian Read-Rezayi
FQH states with quasiholes, with special cases k � 1
(Laughlin state) and k � 2 (Moore-Read state). By multi-
plying these wave functions by  �m�L , this generalizes to the
� � k=�km� 2� Read-Rezayi states and reproduces the
generalized Pauli principle exclusion statistics structure
found empirically in numerical studies by one of us [5].

The � � 1=r Laughlin state is a Jack polynomial with
parameter �1;r and n��� � 
10r�110r�1 . . .�, where ‘‘0r�1’’
means a sequence of r� 1 ‘‘empty orbitals.’’ A basis of
one-quasihole states can similarly be shown to be given by
the Jack with n��� � 
10r�11 . . . 0r�110r10r�1 . . .�, where
there is a single extra empty orbital. These states all have
different M, and hence are orthogonal, and form a multi-
plet. It is easily seen that there are N � 1 such occupation
numbers. The Laughlin quasihole at position zqh is ob-
tained as a coherent state superposition of the previous
Jacks with coefficients ��zqh�i, with i � 0; . . . ; N. A line-
arly independent basis of two-quasihole state is given by
Jacks with the same� and two extra empty orbitals in n���.
For example, at r � 2, two such configurations n��� and
n��0� (with the same M) are [10100010101. . .] and
[10010100101. . .]. While m� and m�0 are orthogonal
free-boson wave functions, the Jack FQH wave functions
J�1;2

� and J�1;2

�0 are not orthogonal with respect to the usual
quantum-mechanical scalar product. This highlights an
important difference between the basis of ‘‘admissible
Jacks’’ (with a generalized Pauli principle) and the ordi-
nary free-particle basis: The pure Jack wave functions are
not eigenstates of a Hermitian Hamiltonian [H LB��� is
not Hermitian for finite �] and are linearly independent but
not orthogonal. [In contrast, Jacks with � real positive (and
unrestricted �) are orthogonal with respect to a combina-
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torically motivated scalar product [4] and also as Calogero-
Sutherland model wave functions.]

Partitions � can be classified by �1, their largest part.
When J�� is expanded in occupation-number states (mono-
mials), no orbital with m> �1 is occupied, and Jacks with
�1 � N� form a basis of FQH states on a sphere surround-
ing a monopole with chargeN� [13]. Uniform states on the
sphere satisfy conditions L� � 0 (HW) and L� � 0
(LW), where L� � E0 and L� � N�Z� E2, where Z �P
izi, and En �

P
iz
n
i @=@zi. When both conditions are

satisfied, E1 � M � 1
2NN� . It is very instructive to

find the conditions for a Jack to satisfy the HW condition
E0J

�
� � 0. The action of E0 on a Jack can be obtained from

a formula due to Lassalle [14]: By using the property that,
for real �> 0, all of the v���� are real positive [4], the HW
condition can be satisfied only for real �< 0. Another
condition we find is that n0 � N � ‘� > 0 (nonzero occu-
pancy of the m � 0 orbital). We then find that a necessary
(but not sufficient) condition is

 N � ‘� � 1� ���‘ � 1� � 0; (5)

where �‘ is the smallest (nonzero) part in �. This im-
poses the following two conditions: (i) � is a negative
rational, which we can choose to write as ��k� 1�=�r�
1�, with �k� 1� and �r� 1� both positive, and relatively
prime; (ii) �‘ � �r� 1�s� 1, and n0 � �k� 1�s� 1,
where s > 0 is a positive integer. The remaining HW
conditions require that all parts in � have multiplicity k,
so that n��� � 
n00s�r�1�k0r�1k0r�1k . . . :� [i.e., the
�k; r; N�-admissibility condition is satisfied as an equality
for orbitalsm � �‘]. The case s � 1 gives the FQH ground
states which also obey the LW condition, with filling � �
k=r, while the cases s > 1 are intimately related to what we
interpret as the quasiparticle (not quasihole) excitations of
these � � k=r states, where r � 2 corresponds to the
bosonic Laughlin–Moore-Read–Read-Rezayi sequence
(see Fig. 2). The s > 1 case represents a new mathematical
result, investigated elsewhere [15].

We will describe the quasiparticle construction else-
where but note that, when it is applied to the case k � 1,
r � 2 (� � 1=2 bosonic Laughlin state), it reproduces the
model quasiparticle state given by Jain’s projective con-
struction [8]. The above derivation very simply reproduces

the admissibility conditions found in Ref. [9] and shows
that the �k; r; N�-admissible Jacks that minimize M at fixed
N � k �N are the only pure Jacks that are acceptable FQH
wave functions. As the L�;� are single-body operators, the
HW and LW conditions will generalize to the fermionic
states obtained by multiplication with powers of
Vandermonde determinants.

We now turn our attention to the Moore-Read state
[2,16]. It was introduced as a model for the observed � �
5=2 spin-polarized FQH (� � 1=2 in the second Landau
level) and is the m � 1 case of the � � 2=�2m� 2� state

 �m
MR �

Y
i<j

�zi � zj�
m�1Pf

�
1

zi � zj

�
; (6)

where �0
MR is a � � 1 FQH state of bosons at � � k=r,

where k � r � 2: The exclusion statistics picture of this
bosonic state is n��0�2; 2�� � 
20202:::� [5] or (the highest
density state with) not more than 2 particles in 2 consecu-
tive orbitals. It was initially defined as the correlation
function of an Ising Majorana field  �2;1� �  �z� with
scaling dimension h2;1 �

1
2 in the minimal model M�4; 3�

with c � 1
2 [small indices label degenerate fields in con-

formal field theory (CFT)]. The correlation functions of a
field  �m;n� satisfy an nmth-order differential equation.
This allows us to define a set of N annihilation operators.
For the Pfaffian h �z1� �z2� . . . �zN�i � Pf� 1

zi�zj
�, the an-

nihilation operators are [17]

 DPf
i �

@2

@z2
i

�
X
j�i

A2;1

zi � zj

@
@zj
�
X
j�i

B2;1

�zi � zj�
2 ; (7)

where A2;1 � 2�2h2;1 � 1�=3 and B2;1 � h2;1A2;1. The
Pfaffian satisfies DPf

i Pf� 1
zi�zj
� � 0. According to the gen-

eral prescription for obtaining FQH wave functions out of
CFT correlators, the first bosonic Moore-Read state  0

MR is
obtained by multiplying the Pfaffian by a Vandermonde
factor:  �1�L . It is straightforward to transform DPf

i to obtain
operatorsDMR

i that annihilate  MR and show that
P
iD

MR
i is

H LB��3� plus a constant [found by direct computation to
be �N�16� 18N � 5N2�=18], which confirms that
 0

MR � J�3
�0�2;2�

.

The � � k=2 bosonic Read-Rezayi (RR) states [3] are
‘‘Zk parafermion states.’’ The first RR state is related to the
Z3 Potts model [18] and is annihilated by a third-order
differential operator. The dominant configuration of this
state is n��0�3; 2�� � 
3030303 . . .� or (the highest density
state with) not more than 3 particles in 2 consecutive
orbitals. The Z3 parafermion FQH state is a single Jack
and diagonalizes the second-order Laplace-Beltrami op-
erator. The RR Zk sequence is  0

RR�z� � J��k;2�
�0�k;2�

�z�.
A bosonic state at � � 2=3 (or a fermionic one with � �

2=5) has been referred to as a Gaffnian [6]. The dominant
configuration of the bosonic state  0

G is n��0�2; 3�� �

2002002002:::� or the highest density �2; 3� state. We
find that this state is annihilated by (7) with h2;1 � 3=4,
as expected, as the wave function of this state is also the

FIG. 2. Solutions to L�J�� � are parametrized by one integer,
s > 0. s � 1 states are FQH ground states. s > 1 states are
related to quasiparticles.
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correlation function of a minimal CFT M�5; 3� field  �2;1�
with this scaling dimension [6], and we identify  0

G�z� as
the �2; 3� vacuum Jack J�2;3

�0�2;3�
�z�.

Instead of using the differential equations that they
satisfy, it is easier to identify the FQH states with Jacks
from their clustering properties. Information on how the
Jacks vanish as k� 1 coordinates coincide is needed:
We verified that, for any �k; r; N�-admissible �, if z1 �
z2 � � � � � zk � Z, J�k;r� �z� has a factor

QN
i�k�1�Z� zi�

r,
showing how it vanishes as a cluster of k� 1 coincident
coordinates is formed. This agrees with the properties of
the bosonic Laughlin–Read-Rezayi states (k � 1, r � 2),
as well as the Gaffnian (k � 2, r � 3). For the case of
the FQH ground states, where � � �0

k;r, the Jacks sat-
isfy a stronger clustering property that relates N- and
�N � k�-particle states: For fzg � fz1; . . . ; zNg,

 

YN
i�1

�Z� zi�rJ
�k;r
�0�k;r�

�fzg� � J�k;r
�0�k;r�

�fzg; Z; . . . ; Z�; (8)

where on the right-hand side, zi � Z for i � N �
1; . . . ; N � k. As a corollary, when a �k; r� Jack FQH
ground state is fully k-clustered, i.e., zki�j ! Zi for i �
1; . . . ; �N and j � 1; . . . ; k, it becomes a Laughlin state in
the cluster coordinates J�k;r

�0�k;r�
�z� !  �kr�L �Zi�. For these

model FQH states, removing a cluster of k particles at a
point Z is exactly equivalent to inserting r flux quanta (or
vortices) at that point (as is well known in the k � 1
Laughlin case and implicit in the Read-Rezayi construc-
tion of the parafermion states [3]).

As is obvious from their clustering property, the
�k; r; N�-admissible Jacks also have the property that a
�k� 1� cluster of particles cannot have relative angular
momentum less than r and hence are simultaneous null
states of Hermitian operators Ĥ�k�1�

r�1 , which are the �k�
1�-body generalizations [6] of two-body Hamiltonians
Ĥ�2�r�1 where the only nonzero two-body pseudopotentials
[13] are Vm > 0 for m � r� 1. However, for k > 1, r > 3
[and (k� 1) and (r� 1) relatively prime], the number of
linearly independent null states of Ĥ�k�1�

r�1 is larger than the
set of �k; r; N�-admissible Jacks, and, in particular, the
homogeneous � � k=r FQH state with � � �0�k; r� is
not in general unique, as seen in Table I of Ref. [19]. For
example, for �k; r� � �3; 4� [spinless boson states withN �
3 �N, N� � 4� �N � 1�], the �3; 4; N�-admissible Jack with
� � �0�3; 4� is a zero-mode eigenstate of Ĥ�4�3 but is not
unique. We did not find any other local Hermitian n-body
pseudopotential operators that could be added to Ĥ�4�3 to
make this Jack a unique null state, so it remains unclear
how to define the k > 1, r > 3 Jack FQH states as unique
null states of a model Hamiltonian (although requiring
them to also be eigenstates of the non-Hermitian operator
H LB does make them unique). Fermionic states at filling
k=�km� r� will also be zero modes of two-body operators
with angular momentum m. Mathematically, they are re-

lated to correlation functions of primary fields of nonuni-
tary CFTs [6,9].

In conclusion, we have identified a number of model
bosonic FQH ground states at � � k=r (with k� 1 and r�
1 relatively prime) with a set of special Jack symmetric
polynomials, whose expansion in monomials (free-particle
occupation-number states) is (recursively) known. The
FQH states described here, being single Jacks, are eigen-
states of a multiplet of N mutually commuting, higher
derivative many-body operators (Sekiguchi operators)
[20,21], of which the first is E1 � M, the total momentum,
and the second is H LB���. We obtained the
�k; r; N�-admissible partitions [9] as a special case of the
highest-weight conditions on the Jacks that generalizes to a
�k; r; s; N� admissibility to include quasiparticle states [15].
By using the formalism and the results described here, we
will be able to address several issues: the description of
non-Abelian FQH quasiparticles (not quasiholes), the com-
putation of the specific heat of the �k; r� sequence of
quantum Hall states, the comparison of the �k; r� states
and the Jain sequence of FQH states, as well as a compu-
tation of electron and quasihole propagators of the Jack
FQH edge states.
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