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Using numerical techniques and asymptotic expansions we obtain the phase diagram of a paradigmatic
model of Coulomb-frustrated phase separation in systems with negative short-range compressibility. The
transition from the homogeneous phase to the inhomogeneous phase is generically first order in isotropic
three-dimensional systems except for a critical point. Close to the critical point, inhomogeneities are
predicted to form a bcc lattice with subsequent transitions to a triangular lattice of rods and a layered
structure. Inclusion of a strong anisotropy allows for second- and first-order transition lines joined by a

tricritical point.
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The appearance of spatial inhomogeneities is a general
phenomenon occurring in a wide variety of systems with
competing interactions on different length scales [1-15]. In
many-body systems correlations often drive the electronic
compressibility negative as in the Hubbard [16] and
Falicov-Kimball [17] models, the electron gas [18], cup-
rates [3,10,19,20] and manganites [6,8] models, hetero-
structures [4], and nuclear matter [5]. This signals a
tendency to phase separation at macroscopic lengths which
is frustrated by the long-range Coulomb interaction.
Although there is agreement that the system can become
inhomogeneous at a mesoscopic scale if the Coulomb
frustration is not too large, the nature of the transition
has not yet been settled. This is an important question in
general but particularly so in metallic systems where the
existence of a second-order quantum critical point separat-
ing an homogeneous phase from an inhomogeneous one
can disrupt the Fermi liquid behavior [3].

In this work we study a ¢* model augmented with long-
range interactions as a generic model of Coulomb-
frustrated phase separation in systems with negative
short-range compressibility. The model (or closely related
variants) has been used to describe inhomogeneities in a
variety of systems [9-14] including mixtures of block
copolymers [9], charged colloids in polymeric solutions
[13], and electronic systems [10,11]. We determine the
transition line from the homogeneous to the inhomogene-
ous state using numerical and analytical techniques and
show that generically the transition is first order in three
dimensions (3D) except for a critical point (CP) (Fig. 1).
This outcome changes if a strong anisotropy is taken into
account. Then both first- and second-order transitions are
allowed separated by a tricritical point (Fig. 3). In addition,
we study the crossover from harmonic to unharmonic
inhomogeneities and the different topological transitions
of the 3D isotropic system. Close to the CP the inhomo-
geneities are shown to form a bcc lattice.
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The model is defined by the following Hamiltonian

I = f dx[p(x)2 — 1P + [Vh(x)]2 + Q2

x [ax [ 800 - ¢][¢(x'>—¢]

Ix — x|
with the scalar classical field ¢ representing the local
charge density, ¢ the average density. A rigid background
ensures charge neutrality. In the case of electronic systems
with a negative compressibility the model describes phe-
nomena at large length scales compared to the underlying
lattice constant. It can be derived by expanding the coarse
grained energy of the system around a reference density
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FIG. 1 (color online). Phase diagram in three-dimensional
isotropic systems. The small dots indicate the Gaussian insta-
bility line Q,. The thin (thick) lines represent first-order tran-
sitions in the strong (weak) coupling approximation. In the two
limits they overlap with the corresponding numerically deter-
mined transition lines from homogeneous to dropletlike
inhomogeneities ((J), from droplets to rods (), and from rods
to layers ().
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belonging to the negative compressibility density region.
The reference density can be fine-tuned so as to eliminate a
small cubic term. Constant and linear terms are inessential;
thus, one obtains a double well energy which can be taken
to the dimensionless form of Eq. (1) by measuring energies
in terms of the barrier height, distances in terms of the bare
correlation length £, and density ¢ in units such that the
double well minima are at ¢¢ = = 1. This leads to a renor-
malized Coulomb coupling in 3D, Q% = 4e2£2/(€ylal).
Here e is the electron charge, €, is a dielectric constant
due to external degrees of freedom, and a < 0 is propor-
tional to the inverse short-range compressibility. More
precisely, it is the second derivative of the short-range
part of the energy per unit volume with respect to the
density at the reference density.

In general a and ¢ will depend on external parameters
like pressure. They can even be taken as temperature
dependent, as in Landau theory, in which case JH has to
be interpreted as a free energy and the model becomes a
mean-field description of a temperature driven transition to
an inhomogeneous state. This can be useful, for example,
to model inhomogeneities appearing below some tempera-
ture in manganites [21].

By computing the static response to an external field in
momentum space, we get the charge susceptibility at finite
|

0

4 G#0 G,G,,G3#0

where the G’s are the reciprocal lattice vectors and V is the
volume.

The appearance of a self-generated cubic term in Eq. (3)
calls for the possibility of a first-order transition which can
be treated analogously to the liquid-solid transition
[22,23]. Assuming that the instability is weakly first order,
which can be checked a posteriori, we restrict the sum to
wave vectors with magnitude G close to ky. To have an
energetic advantage from the cubic term of Eq. (3) we need
to find reciprocal lattices with triads of wave vectors
forming equilateral triangles so that they add to zero. By
requiring symmetric structures with inversion only three
sets of vectors L are allowed that correspond to fcc,
planar hexagonal, and icosahedral reciprocal lattices [23].
The free energy density reads

O N GImd + 8B pml, + ¢4 [3m(m — 1) + 6],

Vv
4

where the Fourier component amplitudes ¢; depend only
on the modulus of G, m is the number of vectors in L, and
p (g) is the number of triangles (nonplanar diamonds) to
which each vector belongs when the triangles are accom-
modated in regular geometrical objects [24]. Upon mini-
mizing Eq. (4) with respect to the wave amplitude ¢ and

oF _ Z dex (G g +4¢ Z b6, 96,96,06,+G,+G,0 T

momentum k which depends only on the modulus of the
momentum k measured in units of ¢!

27w Q?
2

(k) = [18 + 2+ 6(132}1 (k #0). (2)

The susceptibility has a maximum at k, = [27Q*]'/*
which diverges as Q approaches the Gaussian instability
line Q, (the dotted line in Fig. 1) from above, where Q, =
0.1 —3¢?] and Q, = 1/+/27. This indicates an insta-
bility of the homogeneous phase toward a sinusoidal
charge density wave (SCDW) of periodicity 2R, =
27/ky with vanishing wave amplitude at the transition
and direction chosen by spontaneous symmetry breaking.

The Gaussian transition cannot survive at low Q. Indeed
as Q — 0 the Gaussian theory predicts inhomogeneities in
the range || < 1/+/3 as opposed to Maxwell construction
at O = 0 which predicts a globally inhomogeneous state in
the range |¢| < 1. We now show that the system never
reaches the Gaussian instability except for a CP in the
phase diagram: the Gaussian line is preempted by a first-
order transition. Restricting to periodic textures, the free
energy density difference with respect to the uniform state
can be written in Fourier space as

b6, 96,96,96,96,+6,+G3+G,,00
G1,G»,G3,G,#0

3)

[

G one finds G = k. Equating the energies for the different
structures one finds three first-order transition lines be-
tween phases X and Y:

QX,Y = Qc(l - ax,yd_’z)- (5)

where X, Y = U, B, T, L stand for uniform, bcc, triangular,
and layered structures, respectively (see below). The three
first-order transition lines [thin lines in Fig. 1] join at the
CP (¢, Q) = (0, Q..) shown with a solid circle. At the CP
one recovers a SCDW second-order phase transition with a
charge susceptibility divergence since the cubic term of
Eq. (3) vanishes. Away from the CP the Gaussian line is the
limit of metastability of the homogeneous phase (dotted
line). For all the phases, which we describe next, the order
parameter at the transition goes linearly to zero as ¢ — 0
confirming that the transition is weakly first order close to
the CP.

Approaching the first-order lines from above the first
structure to become stable corresponds to the fcc reciprocal
lattice defined by the m = 12 wave vectors G+/2/G =
(£1, £1,0), (1,0, 1), (0, =1, =1) for which p = g =
2. This corresponds to a bcc crystal of inhomogeneities in
real space with ay g = 103/45 = 2.29.

Decreasing Q at finite ¢ the planar hexagonal lattice,
with m =6, p=1, ¢ =0, and apy = 3.44, becomes
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stable corresponding to rodlike inhomogeneities forming a
triangular lattice similar to an Abrikosov lattice in a type Il
superconductor (middle thin line in Fig. 1). For weaker
Coulomb coupling and close to ¢ = 0 we find a subse-
quent morphological transition (lower thin line) that re-
stores the translational symmetry in an additional direction
and leads to a layered structure (m = 2, p = g = 0) with
ar, = 87/(19 — 6+/6) = 20.22. We also find that the
icosahedral reciprocal lattice which corresponds to an
icosahedral quasicrystal never becomes favorable.

The transitions of Eq. (5) are asymptotically exact close
to the CP. Instead for Q — O they are clearly inaccurate
since, still, the range of stability of the inhomogeneous
state is smaller than Maxwell construction. In this limit the
weak first-order character of the transition is lost and more
harmonics should be taken into account.

A good approximation for small Q consists in assuming
domains of uniform density of one or the other phase
separated by sharp interfaces [2,7,12,14]. This is a reason-
able approximation for Q — 0O since there is a strong
separation (g > [, > £) between the typical interface
scale length ¢, the typical size of the domains [; =
£/Q%3, and the screening length Iy = &/(r'/2Q) which
controls the relaxation of the charge inside a domain. The
transition lines in this approximation are shown with the
thick lines at the bottom of Fig. 1. Again one finds the same
topological transitions as in strong coupling but now the
inhomogeneities form sharply defined spherical drops,
cylinders, and layers. The lattice is treated in the Wigner-
Seitz approximation (WSA) [6,18].

The crossover from weak to strong coupling has been
studied numerically minimizing a discretized version of
the energy in the WSA. For rodlike and dropletlike inho-
mogeneities we assume, respectively, cylindrical and
spherical symmetry in order to reduce the minimization
to a one-dimensional effective problem. The numerically
located first-order transition points are shown with the
squares, triangles, and diamonds in Fig. 1. We find that,
as the coupling is decreased, the size of the domains
becomes much smaller than their distance which should
make the approximation particularly accurate at weak
coupling. Nevertheless the numerical result converges to
the asymptotic expansions both at weak and strong cou-
pling indicating a range of applicability of the WSA wider
than expected.

If one relaxes the WSA, the bcc lattice, found at strong
coupling, is expected to evolve into a bcc Wigner crystal of
drops at small Q which is the lowest energy Wigner crystal
lattice [18]. Other lattices however (fcc, hcp) are very close
in energy which suggests that amorphous configurations
will be very competitive as well.

It is interesting to see how unharmonicity is built in as
the coupling is decreased. Figure 2(a) shows the charge
profile for ¢ =0 and different couplings. The SCDW
smoothly evolves into the domain morphology that has,
as a limiting case, the macroscopically phase separated

100

Amplitude
(=)
o
=
N

0 02 04 06 038 1
0/0,

FIG. 2 (color online). (a) Behavior of the charge density
modulation for ¢ = 0 and different couplings (labeled by the
value of Q/Q,). Near the Gaussian instability the modulation is
close to a SCDW (thin full line). As Q decreases, unharmonicity
is built in and the charge modulation tends to a square wave
which has, as limiting case, Maxwell construction at Q = 0.
(b) Evolution of the periodicity of the charge density wave
measured in units of £. Inset: Evolution of the harmonic ampli-
tudes ¢,/> ,~o¢, as a function of Q. The dots indicate the
amplitudes for a layered structure of ¢ = *1 as ruled by
Maxwell construction at Q = 0. Amplitudes for even n vanish
by symmetry.

state at Q = 0. Notice that the horizontal axis is normal-
ized by the cell periodicity 2R., which becomes of the
order of the linear size of the system as Q — 0 [Fig. 2(b)].

The inset of Fig. 2(b) shows the behavior of the Fourier
components. Close to the second-order phase transition the
order n harmonics, ¢, = ¢ with G, = n7/R,, behave

as ¢, = (Q, — 0)!"/2l This follows from the fact that the

modulation ¢, couples with (¢)!"! in the quartic term of
Eq. (3). Higher harmonics proliferate as Q is decreased and
converge to a rectangular profile corresponding to macro-
scopic phase separation at Q = 0 (shown by solid circles in
the inset).

The phase diagram changes dramatically if the gradient
term is made anisotropic, i.e., £/& > 1 where &) (£) is
the bare correlation length in the “hard” (“‘soft”) direc-
tion. This can originate from an underlying crystal which
favors certain orientations of the interfaces. In Fig. 3 we
show the 3D phase diagram with two hard directions and
one soft direction for &;/&, — oo so that only one-
dimensional modulations are allowed. The units are fixed
as before with & replacing £.

In this case the cubic term in Eq. (3) has no effect and
one recovers the Gaussian instability where SCDW appears
at a second-order transition in an extended range of cou-
pling. Thus, for a metallic system, Landau damping be-
comes relevant and one should take the coupling to the
fermions explicitly into account [3].

As before the Gaussian line cannot persist up to Q = 0.
We find, in fact a tricritical point at (¢, Q) =
(£+/3/5,16/250,) where the transition becomes first-
order (solid circles in Fig. 3). The position of the tricritical
points and the behavior of the charge density modulation
around it can be studied retaining only two harmonics in
the order parameter with collinear wave vectors:
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FIG. 3 (color online). The phase diagram for anisotropic 3D
systems. The thin line corresponding to the Gaussian instability
determines the second-order transition line above the tricritical
point (@). Below the tricritical point the transition is first order
and is determined numerically ([J) and in the weak coupling
limit assuming sharp interfaces [2] (thick line). Below the
tricritical point the Gaussian line becomes the limit of meta-
stability of the uniform phase.

¢(x) = & + 2[¢) cos(Gx) + 5 cos(Gyx)]

and assuming ¢, <K ¢;.

By expanding the energy around the tricritical point and
minimizing with respect to the second-harmonic amplitude
¢, one obtains an effective Landau free energy expansion
for the modulated phase in terms of ¢; only,

oFu _ rét + ugdt + ugd, (6)

with r = 4(Q — 0,)/Q,, uy = 6 — 32¢*Q,/0 >0, and
ug is a positive constant. This free energy has the canonical
form for a tricritical point which is determined by the
vanishing of the quartic term on the Gaussian line [23].

In the first-order transition region (14 < 0), the appear-
ance of the inhomogeneities is determined by the coeffi-
cient ug in the free energy expansion, Eq. (6), whose
precise value depends upon higher-order harmonic contri-
butions. As before we have determined the first-order
transition line by numerical minimization (open square in
Fig. 3) and from the weak coupling expansion assuming
sharp interfaces [2] (thick line).

In conclusion, we have obtained the phase diagram and
characterized the crossover of inhomogeneities from
strong to weak coupling in a model of Coulomb-frustrated
phase separation for systems with a negative short-range
compressibility. For isotropic systems we find that the
transition from the uniform phase to the inhomogeneous
phase is always first order except for a CP. Close to the CP
inhomogeneities are predicted to form a bec lattice with a
subsequent transition to a triangular lattice of rods and
finally to a layered structure. The transition lines continu-
ously evolve into the weak coupling limit. In the case of

anisotropic systems the transition to the inhomogeneous
state can become second order with a tricritical point
separating the second-order line at strong coupling from
the first-order line at weak coupling. Inclusion of an ex-
plicit cubic term in Eq. (1), not considered here, will make
the phase diagram asymmetric maintaining the topology.
Thus we expect our results to be qualitative valid for a wide
range of systems with Coulomb-frustrated phase
separation.
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