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Almost all studies of the densest particle packings consider convex particles. Here, we provide exact
constructions for the densest known two-dimensional packings of superdisks whose shapes are defined by
jx1j

2p � jx2j
2p � 1 and thus contain a large family of both convex (p � 0:5) and concave (0< p< 0:5)

particles. Our candidate maximal packing arrangements are achieved by certain families of Bravais lattice
packings, and the maximal density is nonanalytic at the ‘‘circular-disk’’ point (p � 1) and increases
dramatically as p moves away from unity. Moreover, we show that the broken rotational symmetry of
superdisks influences the packing characteristics in a nontrivial way.
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Packing problems, such as how densely a large collec-
tion of nonoverlapping particles can fill space, have been of
perennial interest to physicists, engineers, and mathemati-
cians [1–8]. A basic property of a packing is the density�,
defined as the fraction of space covered by the particles,
which is bounded from above by the maximal density
�max. Dense packings are intimately related to the struc-
ture of low-temperature phases of matter, including liquids,
glasses, and crystals [1–3] as well as heterogeneous mate-
rials [3] and granular media [4]. Finding the maximally
dense arrangement of congruent particles located on the
sites of a Bravais lattice is one of the basic problems in the
geometry of numbers [5,6]. The densest packings in very
high Euclidean dimensions are intimately related to the
best way of transmitting stored data through a noisy chan-
nel [6].

In d-dimensional Euclidean space Rd, packings of con-
gruent spherical particles for d � 2 and d � 3 provide the
few examples of nontiling particles whose maximally
dense arrangements can be proved. It is known that the
triangular and face-centered cubic lattice packings have the
maximal packing density for circular disks (�max �

�=
������
12
p

) and spheres (�max � �=
������
18
p

) [7], respectively.
However, very few rigorous results exist for the densest
packings of congruent nonspherical particles. For ellipses
(d � 2), the provably densest packing (�max � �=

������
12
p

) is
constructed by an affine transformation of the triangular-
lattice packing of circular disks [6], which can also be
obtained by enclosing each ellipse with a hexagon with
minimum area that tessellates the space [9,10]. For ellip-
soids (d � 3), the densest known packing (�max � 0:77) is
achieved by crystal packings of congruent ellipsoids in
which each ellipsoid has contact with 14 others [10].
Recently, Conway and Torquato [11] constructed the dens-
est known packings of regular tetrahedra, and Trovato et al.
[12] have found dense packings of truncated cones pos-
sessing uniaxial symmetry.

Virtually all systematic investigations of the densest
particle packings have been carried out for convex objects.
In this Letter, we construct the densest known two-
dimensional packings of superdisks (defined below) in
the plane, which provides a wide class of packings of
both convex and concave particles. An analysis of our
candidate maximally dense packings reveals that the bro-
ken rotational symmetry of superdisks influences the pack-
ing characteristics in a nontrivial way that is distinctly
different from ellipse (ellipsoid) packings.

A d-dimensional superball is a centrally symmetric
body in d-dimensional Euclidean space occupying the
region jx1j

2p � jx2j
2p � � � � � jxdj2p � 1, where xi (i �

1; . . . ; d) are Cartesian coordinates and p � 0 is the defor-
mation parameter, which indicates to what extent the
particle shape has deformed from that of a d-dimensional
sphere (p � 1). In particular, a superdisk G is our desig-
nation for the two-dimensional case (d � 2). When p � 1,
the superdisk is just a circle. As p continuously increases
from 1 to 1, a family of superdisks with square symmetry
is obtained. As p decreases from 1 to 0.5, another family of
square-symmetric superdisks is obtained, but with the
symmetry axes rotated 45 degrees with respect to that of
the first family (see Fig. 1). At the limiting points p � 1
and p � 0:5, the superdisk becomes a perfect square.
When p < 0:5, the superdisk is concave and becomes a
cross in the limit p! 0.

Here, we construct the densest known packings of both
convex and concave superdisks. For convex superdisks, we

(a) p = 0.45 (b) p = 0.75 (c) p = 1.0 (d) p = 2.0

FIG. 1. Superdisks with different deformation parameter p.
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demonstrate that the maximal packing density �max sig-
nificantly increases as p changes from unity, i.e., as one
moves off the circle point. For p � 1, the rotational sym-
metry of a circular-disk is broken (see Fig. 1), which results
in a cusp in �max at p � 1; i.e., the initial increase of �max

is linear in jp� 1j, and thus�max is a nonanalytic function
of p at p � 1. Note that for ellipse packings, �max is not
influenced by the broken rotational symmetry introduced
by stretching the optimal circle packing along a particular
direction, which maintains six contacts per particle, and
thus no improvement over the maximal circle density is
possible. For superdisks, one can take advantage of the
fourfold rotationally symmetric shape of the particle by
arranging them on the sites of certain lattices to obtain a
dramatic improvement on the maximal circle packing den-
sity. By contrast, one needs to use higher-dimensional
counterparts of ellipsoids (d � 3) in order to improve on
�max for spheres [10]. Even for three-dimensional ellip-
soids, �max increases smoothly as the aspect ratios of the
semiaxes vary from unity and hence has no cusp at the
sphere point [13]. Thus, optimal superdisk packings pos-
sess packing characteristics that are distinctly different
from optimal ellipse (or ellipsoid) packings for reasons
detailed below.

We use a recently developed event-driven molecular
dynamics (MD) packing algorithm to guide us to obtain
the analytical construction of the densest packings of con-
vex superdisks [15]. The MD simulation technique general-
izes the Lubachevsky-Stillinger (LS) sphere-packing
algorithm [16] to the case of other centrally symmetric
convex bodies (e.g., ellipsoids and superballs). Initially,
small superdisks are randomly distributed and randomly
oriented in a box (fundamental cell) with periodic bound-
ary conditions and without any overlap. The superdisks are
given translational and rotational velocities randomly, and
their motion followed as they collide elastically and also
expand uniformly, while the fundamental cell deforms to
better accommodate the packing. After some time, a
jammed state with a diverging collision rate � is reached
and the density reaches a locally maximum value.

Extensive experience with spheres and circular disks has
shown that, for reasonably large packings, a sufficiently
slow growth rate leads to jammed packings that are very
near the densest arrangements, i.e., face-centered-cubic
lattice and triangular-lattice, respectively [17,18].
However, to obtain perfect crystalline packings from
such simulations, one needs to know the ‘‘magic number’’
of particles to use in a particular simulation box a priori,
which generally is not possible. We note that in two
dimensions, because the densest local packing of circular
disks (an equilateral triangle with three circular disks
centered at its corners) can tessellate the space, large
packings of circular disks are usually nearly completely
crystallized; i.e., they contain grains of circular disks on a
triangular lattice and dislocations, even when a moderate
expansion rate is used. We find from simulations that this is
also true for packings of superdisks, which implies that the

densest equilibrium state (densest packing) of convex
superdisks is consistent with the structure of the densest
local clusters that tessellate space. Thus, we should be able
to identify the densest packings of superdisks by running
the simulations for relatively small packings and experi-
menting with a wide range of particle numbers in the
fundamental cell to find the ‘‘magic number.’’

Two types of highly dense lattice packings of convex
superdisks emerge from the simulations (see Fig. 2), which
are run for a variety of different values of deformation
parameter p. Importantly, we do not exclude the possibility
of the existence of denser periodic packings with a com-
plex particle basis, although we did not find any such
packings from our simulations. Subsequent analytical cal-
culations suggested by these simulation results led us to the
following conclusion: there are two families of Bravais
lattices �0 and �1, consistent with the symmetry of super-
disk G, one of which will give the densest packing of G for
different values of deformation parameter p (0:5< p<
1). In the densest packings, each superdisk has six con-
tacting neighbors. The lattice vectors of �0 and �1 are
e1 � 2i, e2 � i� �22p � 1	1=2pj and e1 � 2�1�1=2p	i�
2�1�1=2p	j, e2��2

�1=2p�21=2s	i��2�1=2p�21=2s	j, re-
spectively, where i, j are unit vectors along x1-
and x2-directions, and s is the smallest positive root
of the following equation: j2��1�1=2p	 � 2�1=2sj2p �
j2��1�1=2p	 � 2�1=2sj2p � 1.

The maximal packing density as a function of p (see
Fig. 3) is explicitly given by

 �max �
4

je1jje2j sin�

Z 1

0
�1� x2p	1=2pdx; (1)

where � � cos�1
e1 � e2=�je1jje2j	�. When p 2 �1; p�	, ei
(i � 1, 2) are the lattice vectors of �0; otherwise, they are
the lattice vectors of �1. At p� � 1:286, the two distinct
lattice packings have the same density, i.e., ��max � 0:916.
Figure 3 shows that �max increases dramatically as p
moves away from the circle point (p � 1).

As the deformation parameter p changes from unity, the
continuous rotational symmetry of circular disks is broken;

FIG. 2 (color online). Two types of lattice packings of super-
disks that have the maximal packing density for different de-
formation parameter p. In the figures (a) and (b), p � 2:0 and
p � 1:5, respectively. In both cases, �1 packing is denser. The
boundaries of the simulation box are shown by dark lines.
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i.e., superdisks only possess fourfold rotational symmetry.
The broken symmetry of superdisks affects the maximal
packing density�max�p	 in a nontrivial way. There are two
discontinuities of the derivative �0max�p	: at p � 1 and
p � p� (see Fig. 3). Thus, as p changes from 1, �max

will increase in a cusplike manner. By expanding
�max�p	 around p � 1, we get

 �max � �0
1� a��p� 1	 �O��p� 1	2�� (2)

for p � 1 and

 �max � �0
1� a��p� 1	 �O��p� 1	2�� (3)

for p � 1, where�0 � �=
������
12
p

is the density of triangular-
lattice packing of circular disks; a� � �1=3	

ln2� �1=

���
3
p
	 ln�2�

���
3
p
	 � 1 � �0:0086 . . . and a� �

�2=3	 ln2� �1=2	 ln3� 1 � 0:0114 . . . are the derivatives
of �max [Eq. (1)] at p � 1 as p approaches from left and
right, respectively. The initial increase in �max is linear in
jp� 1j; i.e., �max is nonanalytic at p � 1, which we have
noted is not true for either optimal ellipse or ellipsoid
packings as one moves off the circle or sphere points,
respectively [13]. The fourfold symmetry of a superdisk
results in a value of �max that is always above that for the
optimal circle packing for any convex shape p � 1, which
is to be contrasted to optimal ellipse packings that have the
same maximal density of circles for any aspect ratio.

The other discontinuity at p � p� corresponds to a
jumplike change of the packing structure. In particular,
as p increases from 1 (the �0 and �1 lattices coincide at
p � 1), the packing lattice continuously deforms from the
triangular lattice to the �0 lattice till p � p�, where the
packing lattice ‘‘jumps’’ from the �0 lattice to the �1

lattice and then proceeds to deform continuously. This is
because the superdisk fits the ‘‘enclosing cell’’ (defined
below) of the �1 lattice better when p exceeds p�. Note
that superdisks with p � p� have a twofold degenerate

crystalline ground state; i.e., the �0-lattice and �1-lattice
packings of these particles have the same density.

Analysis of the packing structure is necessary to under-
stand the aforementioned effects of broken symmetry. We
define the enclosing cell C of a superdisk to be the polygon
whose edges are common tangent lines of the superdisk
and its contacting neighbors (see the inserts of Fig. 3). For
a particular lattice packing, the enclosing cells for all
superdisks are the same and tessellate space. As p varies,
the enclosing cell for a particular lattice also deforms
continuously, i.e., from a regular hexagon to a square as
p increases from 1 to 1, respectively.

For fixed p, the denser lattice packing is the one with the
smaller enclosing cell. The two cells C0 and C1 (associated
with the �0 and �1 lattices, respectively) accommodate the
curvature around the boundary point (2�1=2p, 2�1=2p) and
its images, and (1, 0) and its images better, to give a higher
local density. When p is slightly larger than 1, the curva-
ture around point (2�1=2p, 2�1=2p) and its images is domi-
nant, and the denser packing is given by �0 lattice. As p
increases, the curvature around point (1, 0) and its images
becomes dominant; thus, the denser packing jumps to �1

lattice. For 0:5 � p � 1, the curvature around point (1, 0)
is always dominant, and so the �1 lattice gives the denser
packing.

Now, we generalize the analysis above to the case of
concave superdisks (0< p< 0:5) [cf. Figure 1(a)]. To
construct such candidate maximally dense packings, we
attempt to minimize exclusion-volume effects. For each
concave superdisk, we consider the convex enclosing box
that has the smallest area among all convex boxes that
contain the particle, which is a square in this case. First,
we construct the densest packing of the convex enclosing
boxes, i.e., stacks of square chains. Then, we allow these
square chains to overlap as much as possible without
violating the interparticle impenetrability constraints.

FIG. 4 (color online). Density versus deformation parameter p
of the constructed lattice packings of concave superdisks.
Inserts: (a) The packing arrangement for the case p � 0:45
and (b) the corresponding enclosing cell for a particle. In the
limit p! 0, a superdisk becomes a ‘‘cross.’’

FIG. 3 (color online). Density versus deformation parameter p
for the �0lattice and �1-lattice packings of superdisks. Inserts:
The enclosing cells C0 (a) and C1 (b) of the superdisks with p �
2:0 for �0 lattice and �1 lattice, respectively.
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This also maximizes the number of contact neighbors for
every concave superdisk. In this way, we can construct a
family of dense lattice packings of concave superdisks in
which each particle has an hour-glass-like concave enclos-
ing box [see the insert (b) of Fig. 4] and six contacting
neighbors. The constructed lattice packings of concave
superdisks have the symmetry of the �1-lattice packings
of convex superdisks and the lattice vectors are e1 �

�2�1=2p � 1	i� 2�1=2pj, e2 � 2�1=2pi� �2�1=2p � 1	j.
As p decreases from 0.5, the concave particle shrinks,

and the lattice for the optimal packing deforms continu-
ously; in the limit p! 0, the superdisks become ‘‘crosses’’
with vanishing area and packing density. However, the
number density of the lattice packing we constructed is
twice that of the square-lattice packing of crosses, whose
enclosing box is a square. The packing density of our
concave superdisk packings [given by Eq. (1)] is shown
in Fig. 4 [19]. Our results for �max exhibit another dis-
continuity in the derivative at p � 0:5 [20]. We emphasize
that we cannot rule out the existence of denser periodic
packings of such concave particles.

In summary, we have found exact constructions for the
densest known packings of both convex and concave super-
disks (0< p<1), which are achieved by one of two
families of lattice packings, i.e., �0-lattice and �1-lattice
packings. The result for convex superdisks is consistent
with a famous conjecture by Minkowski in geometry of
numbers [5,21]. We also showed that the increase of maxi-
mal packing density is initially linear in jp� 1j; �max�p	
has a cusp at p � 1 and has another discontinuity in its
derivative �0max�p	 at p � p�, which are effects of the
broken symmetry of superdisks. These features of the
superdisk system make it distinctly different from optimal
ellipse packings. Interestingly, the result that �max appre-
ciably increases as p varies from unity is also consistent
with the dramatic improvement on the lower bound on
�max of superballs relative to that for spheres in arbitrarily
high dimensions found by Elkies, Odlyzko, and Rush [22].
The optimal Bravais lattice packings of the superdisks for a
particular value of p are also the corresponding densest
crystal phase states of superdisks in equilibrium. There-
fore, our findings provide a starting point to quantify the
entire crystal phase behavior of superdisk systems and their
nonequilibrium packing characteristics, which should
deepen our understanding of the statistical thermodynam-
ics of nonspherical hard particles. Such superdisks can be
experimentally mass produced using current lithography
techniques.

In future work, we will study both ordered and disor-
dered packings of superballs and superellipsoids in three
dimensions, focusing on their ‘‘jamming’’ characteristics
[23,24] and the effect of broken symmetry. We expect that
increasing the dimensionality of the particle will imbue the
optimal packings of ‘‘superballs’’ or ‘‘superellipsoids’’
with structural characteristics that are richer than their
two-dimensional counterparts.
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