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We determine the absolute electron density of a lithographically grown nanostructure with 25 nm
resolution by combining hard x-ray Fourier transform holography with iterative phase retrieval methods.
While holography immediately reveals an unambiguous image of the object, we deploy in addition
iterative phase retrieval algorithms for pushing the resolution close to the diffraction limit. The use of hard
(8 keV) x rays eliminates practically all constraints on sample environment and enables a destruction-free
investigation of relatively thick or buried samples, making holographic diffraction imaging a very
attractive tool for materials science. We note that the technique is ideally suited for subpicosecond
imaging that will become possible with the emerging hard x-ray free-electron lasers.
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Nanoscience mandates the ability to characterize the
structure of objects on the nanoscale. Among the most
commonly used techniques for that purpose are scanning-
electron (SEM) and atomic-force microscopy (AFM),
although their applicability is generally limited to surface
structures. Transmission electron microscopy (TEM) can
look into a material, but delicate nanostructures are likely
to be disturbed or destroyed by the tedious thinning pro-
cedures accompanying TEM sample preparation. In addi-
tion, all these methods are quasistatic; i.e., their potential to
trace dynamic processes is very limited. Hard x rays, on the
other hand, can overcome all the above limitations. A
wavelength in the order of A = 1 A allows for excellent
spatial resolution, and the high penetration into matter
permits to study thick samples or even buried structures
in an easy-to-realize experimental setup. But most impor-
tantly, hard x-ray free-electron lasers [1,2] will push the
achievable time resolution many decades down to the
femtosecond (fs) regime. Here, we demonstrate how co-
herent hard x rays can be used for a determination of the
absolute electron density of a lithographically tailored gold
nanostructure (the letter P) from a single diffraction ex-
periment, yielding both the shape and the height of the
sample. We combine Fourier transform holography,
which—by a single Fourier transform—gives an unam-
biguous image of the sample structure, with iterative phase
retrieval procedures that enable us to achieve a spatial
resolution almost reaching the diffraction limit.

In this lensless imaging process a coherent diffraction
pattern of the object needs to be inverted by computational
means. Since only the absolute square of the diffraction
amplitudes, the diffraction intensities, can be measured,
the information on the phase of the scattered photons is
lost. The phase information is however needed for compu-
tationally inverting the diffraction pattern. One way to
overcome this problem is to encode the phase in the
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interference of the scattered photons with a reference
wave, producing a hologram at the detector. Attempts to
use holographic techniques with hard x rays have however
been rather limited up to now and experiments relied either
on crystals as objects [3] or on waveguides for creating a
reference beam [4]. In FTH [5-8] phase retrieval becomes
particularly simple, since in a typical setup the object and a
spatially nearby reference are coherently illuminated and a
single Fourier transform of the recorded hologram yields
the convolution of the object and reference amplitudes.
The spatial resolution achievable with FTH is comparable
to the reference source size [9,10].

Provided the sampling of the diffraction pattern is suffi-
ciently high [11], the FTH result can be used as starting
point for further iterative phase retrieval in order to in-
crease the resolution [12]. In the latter method, which is
also known as coherent diffraction imaging (CDI), algo-
rithms are used that cycle between real and Fourier space,
applying appropriate constraints in each domain [13]. The
minimum constraints are the approximate shape of the
object, the so-called support, and the measured diffraction
amplitudes. Essentially, the achievable spatial resolution is
diffraction-limited, i.e., determined by the maximum pho-
ton momentum transfer. This compares very favorably to
hard x-ray microscopes. Because of the difficulties in
producing appropriate lenses, the achievable resolution is
typically about 50—100 nm with today’s zone plates [14]
and compound refractive lenses, respectively, and it seems
to be difficult to reach a resolution below 30 nm [15].
Examples for CDI experiments can be found in the litera-
ture, both for measurements with soft [16,17] and with
hard x rays [18,19]. The main problem in CDI is to define
the object support without having any additional informa-
tion like an FTH result. In most cases, information on low
spatial frequencies is not accessible due to an extended
beam stop blocking the direct beam to prevent detector
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damage, which has severe consequences for the conver-
gence of the reconstruction algorithms and can be over-
come by appropriate algorithms [20,21] only to a certain
extent.

Here, we show for the first time results from hard x ray
HDI—a combination of FTH and iterative phase retrieval
methods in order to overcome the limitations of conven-
tional CDI as mentioned above. We lithographically fab-
ricated a nanoscale gold structure (the block letter P) on a
50 nm-thin Si3N, membrane, with the letter elements
about 200 nm in widths and approximately 220 nm in
height. Five gold dots with about 175 nm diameter and
220 nm height were equally placed on a circle of radius
r=2.5 um around the object, each acting as reference
source in the scattering process. In this straightforward
form of spatial multiplexing each source generates a
unique image upon reconstruction. The multiple images
can then be averaged in order to increase the image quality
[10].

The experiment was carried out at beam line ID10C at
the European Synchrotron Radiation Facility in Grenoble,
France. A beam of partially coherent hard x-ray photons
(energy E = 8 keV and wavelength A = 1.55 A, respec-
tively) was used. Temporal coherence was ensured by a
Si(111) channel-cut monochromator (AE/E = 10~*) and
roller-blade slits were used to select a spatially coherent
beam cross-section A, = 10 X 10 wm? with an intensity
of Iy = 1.4 X 10® photons per second. Two pairs of guard
slits were used to clean the beam from parasitic slit scat-
tering before illuminating the sample. The diffraction pat-
tern was recorded in transmission geometry with a direct-
illumination charge-coupled device (Princeton Instru-
ments, 1242 X 1152 pixels, 22.5 X 22.5 um? pixel size)
at a distance of L = 3.29 m from the sample. For reducing
air scattering we used an evacuated flight tube with kapton
windows, whereas the sample as well as the slits were
situated in air. A beam stop (1 mm diameter) at the end
of the flight tube was used to block the direct beam and

some remaining parasitic slit scattering at very small
angles.

Figure 1(a) shows the recorded hologram in a 1094 X
1094 pixel-wide array, almost extending to the edges of the
detector. The image is the sum of 200 single pictures, 3 s
exposed each. A single Fourier transform of the measured
intensities gives the spatial autocorrelation of the overall
object, including the crosscorrelation between the object
and the dots, which directly yields the object shape and its
complex conjugate (a 180°-rotated copy) for each dot [10].
Since for each reference the object consists of the letter P
plus the 4 other references, the reference sources are
imaged as well. The central part of the inverted hologram
is shown in Fig. 1(b). The letter P is clearly recognizable.
Its shape is, however, slightly distorted and the contrast is
reduced by a wavy background. This image degradation
stems from the considerable number of bad pixels in the
diffraction pattern, i.e., pixels that were either blocked by
the beam stop or damaged or (in few cases, near the central
beam stop) containing some remaining parasitic slit scat-
tering. In addition, the relatively big reference-source size
causes a slight blurring of the P structure in the FTH
reconstruction, which is a small effect in our case.

In order to improve the statistics of the FTH result we
average the 5 independent subimages. This average, shown
as inset in the right upper corner of Fig. 1(b), still exhibits
some small distortions and a nonconstant background, but
features appear already quite clearly. Qualitatively, this
result compares well to the scanning-electron micrograph
depicted in the right lower corner of Fig. 1(b). The aver-
aged FTH result is thus extremely well suited as starting
point for further iterative phase retrieval algorithms that
allow to push the spatial resolution down to the diffraction
limit [16,17].

Additionally, we may also look at the FTH phases that
are shown in Fig. 2. In general, x rays passing through a
material of thickness z experience a phase shift A¢ ac-
cording to A¢p = (27/ )5z, where 8 denotes the real part

FIG. 1 (color).

HDI processing of a single diffraction experiment. (a) Hologram of the lithographically grown gold nanostructure

(block letter P), recorded with partially coherent 8 keV photons. Logarithmic pseudocolor scale. (b) Central part of the modulus of the
Fourier transformed hologram, imaging the object and its rotated copy 5 times each. Logarithmic pseudocolor scale. The inset in the
upper right corner shows the average of the 5 independent FTH results on a linear pseudocolor scale. For comparison, an SEM image is
shown as inset in the right lower corner. (c) Visualization of the central object geometry as derived from the electron density profile.
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FIG. 2 (color). Central part of the phases of the Fourier trans-
formed hologram. The object phases are affected by the phase
structure which is caused by missing detector pixels. The inset
shows the average of slices (indicated by the dashed white lines)
within the 5 individual object image regions through the differ-
ence A between the experimental and simulated data, where a
homogeneous sample height was assumed and missing detector
pixels were accounted for.

of the material’s refractive index at a specific photon
energy. In the Fourier transform of the hologram we are
sensitive to the difference between the x-ray phase shift in
the reference and the sample structure. Provided sample
and reference are illuminated with a plane wave, the phase
in the FTH object image is ¢ = 0 at all points where the
heights of object and reference dot are equal and ¢ =
(27r/X)6Az at points with a height difference of Az. In
Fig. 2 the object is well recognizable although ¢ is affected
by a strong phase structure, which is caused by the missing
pixels due to the beam stop and local detector damage.
Since we know those pixels, we can account for them and
derive quantitative information about the true object phases
and the object height, respectively. Assuming a homoge-
neous sample height we simulate the corresponding FTH
phases while accounting for the bad detector pixels as well
as for the intensity in the measurement together with
Poisson statistics [22]. To verify the quality of our assump-
tion we take the difference between the experimental and
simulated data, A¢, and further average over the regions
containing the 5 independent object images [22]. The inset
in Fig. 2 shows a slice through that map, corresponding to
the average of slices through A ¢ at positions indicated by
the dashed white lines in the main panel. From that cut we
obtain (A¢) = 0.323 *+ 0.045 rad. This difference is ex-
plained by a Fresnel phase ¢ that forms between the object
and the reference dots, since in the experiment the sample
was situated / = 0.48 m downstream of the beam-defining
slits; i.e., the sample was not illuminated by a plane wave
but by the Fresnel diffraction of the slits. Following

Ref. [23] we calculate the mean @ for the object as
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yielding @ = 0.3 rad in excellent agreement with the
above finding. The standard deviation of A¢ corresponds
to = 23 nm—a quantitative measure of the homogeneity
of the sample height.

For the iterative CDI procedures, we defined an initial
support based on the P shape of the FTH average plus 5
circles at the reference-source positions. We then used the
standard CDI algorithms of error reduction and hybrid-
input output [13] and also allowed for further support
refinement by the so-called shrink wrap method [21],
which mainly affected the actual support of the reference
dots. To be sure to have a clear result 100 independent
phase retrieval runs (950 iterations each) were carried out.

Figure 3(a) shows the average amplitudes of those runs,
yielding an object shape and support, respectively, in ex-
cellent agreement with the SEM finding. The small hot
spot in the actual amplitude values, approximately in the
middle of the long upright bar of the P letter, is an artifact
due to the partial coherence of the x-ray beam [24]. The
theoretical spatial resolution, corresponding to the maxi-
mum photon momentum transfer Q, recorded at the edge
of the Fourier transform array, was 20.7 nm. From line
scans through an individual reconstruction result, illus-
trated in Fig. 3(b), we derive a resolution of =~ 25 nm,
which comes close to the theoretical value.

We note that the computing time for getting from the
diffraction pattern [Fig. 1(a)] to the final object electron
density as anticipated in Fig. 1(c) is very small. The
computation time for the single Fourier transform of the
measured hologram and the averaging of the 5 individual
object images [Fig. 1(b)] is negligible. A successful phase
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FIG. 3 (color). Results from the FTH-based phase retrieval
runs. (a) Average amplitude of 100 phase retrieval runs. Linear
gray scale. (b) Slices through an individual phase retrieval result
at positions indicated by the red and blue line at the height of the
eye-guiding arrow in (a), demonstrating a resolution of = 25 nm
(compare dashed lines). (c) Visualization of the object geometry
(letter plus reference dots) as determined from the electron
density profile.
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retrieval run that makes use of the FTH results takes about
10 min on a standard PC.

The object electron density can be precisely derived via
the relation

1, | 2
(1o/A)AD = r%[f(l))z(x’ )’)el(Q‘ﬁQ“y)dXd}’} , 2@

with /; the detected scattering intensity in the solid angle
AQ, ry = 2.82 X 10~ 15 m the classical Thomson electron
radius, and Q, (Q,) the x (y) component of the scattering
vector Q. (p).(x, y) denotes the electron number density
projected along the z direction (parallel to the x-ray beam)
and is defined as

(p),(x,y) = f p(x,y, z)dz. 3)

From the phases of the inverted hologram we can assume
that our sample has a homogeneous electron density (com-
pare Fig. 2), and thus {p).(x, y) becomes a constant, iden-
tical to the number of gold electrons per unit volume
(4653 nm~3) multiplied by the mean sample height .
This implies that the integral on the right hand side of
Eq. (2) comprises only the Fourier transform of the object
support multiplied by a constant. Since we precisely know
the support from our reconstruction result based on the
FTH findings [compare Fig. 3(a)], we can compute the
integral. Inspection of Eq. (2) yields & = 235 nm * 10%,
where the error is derived from the FTH phases, see above.
The result is visualized in Fig. 3(c). Our finding is in very
good agreement with an AFM measurement, confirming
that the nanostructure has a homogeneous height with a
mean of 7 = 220 nm.

In conclusion, we have shown that holographic diffrac-
tion imaging (HDI) with hard x rays is an excellent tech-
nique for determining electron density profiles on the
nanoscale. By combining the FTH result with iterative
phase retrieval methods we push the spatial resolution
toward the diffraction limit. In a straightforward way one
quickly arrives from a single diffraction measurement at
the object electron density, as illustrated in Figs. 1(a)—1(c).
By virtue of this concept we determined the absolute
electron density and derived both shape and height of a
lithographic gold nanostructure. The presented approach
with coherent hard x rays is ideally suited for applications
in materials science, where samples can be thick, may
consist of buried structures, or have to be measured under
extreme conditions such as high pressure. Finally, we
envision experiments of similar type to be carried out at
future hard x-ray free-electron laser sources [1,2], where
diffraction patterns can be collected within a single shot at
the time scale of =10 fs, opening fascinating possibilities
for imaging fast dynamic processes.

We thank A. Fromsdorf for characterizing our sample
with AFM, A. Schropp for providing a pair of slits, and
I. Vartaniants for discussion.
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