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We study internal wave generation in a laboratory model of oscillating tidal flow on a continental
margin. Waves are found to be generated only in a near-critical region where the slope of the bottom
topography matches that of internal waves. Fluid motion with a velocity an order of magnitude larger than
that of the forcing occurs within a thin boundary layer above the bottom surface. The resonant wave is
unstable because of strong shear; Kelvin-Helmholtz billows precede wave breaking. This work provides a
new explanation for the intense boundary flows on continental slopes.
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Introduction.—Away from shallow, well-mixed surface
regions, the density of sea water increases with depth due
to variation in salinity and temperature [1]. Under the
influence of gravity, this density stratification provides
the restoring force for a class of waves within the ocean
interior called internal waves. In a nonrotating stratified
fluid (Coriolis parameter f � 0), internal waves with fre-
quency ! propagate with a slope (tangent of the angle
between the group velocity direction and the horizontal)
determined by the dispersion relation [2]:

 Sw �

�������������������
!2

N2 �!2

s
; (1)

where N �
�����������������������������������
��g=�0��@�=@z�

p
is the local buoyancy fre-

quency. This unusual dispersion relation leads to many
counterintuitive dynamical phenomena, such as critical
reflection [3] and wave attractors [4].

A significant fraction of the internal waves in the oceans
are generated by oscillatory tides flowing over ocean to-
pography such as continental margins and underwater
mountains [5]. This can be appreciated in a reference frame
moving with the tides; an ocean boundary then acts like an
oscillating wavemaker. The particular case of wave gen-
eration from continental margins has been studied both
theoretically [6,7] and experimentally [8,9] because inter-
nal waves affect many coastal processes [10–14].

As in previous work [6–9], we consider a two-
dimensional model topography for continental margins,
which consists of two horizontal segments connected by
a slanted segment, as shown in Fig. 1(a). The slanted
segment mimics a steep continental slope and has topo-
graphic slope St � �z=�x. The horizontal segments
mimic the less steep continental rise and shelf, and the
arc connecting the upper horizontal segment with the
sloping segment represents the shelf break.

An important fluid dynamical parameter in the problem
is the ratio Sw=St. Recent oceanic observations have re-
vealed many locations where the angle of the continental
slope is close to that of local semidiurnal internal waves
(approximately a 12-hour period); thus, the regime Sw � St

occurs frequently [10]. However, neither previous experi-
ment nor theory provides a clear physical picture for wave
generation in this regime. The experimental studies [8,9]
have focused on regimes of Sw < St and Sw > St, while
theory has considered inviscid fluids and predicts divergent
velocity fields for Sw � St [6,7]. We present here an in-
vestigation of this important yet unexplored parameter
regime. Our work also provides insight into the general
problem of tidally driven internal wave generation by
topography.

Experiment.—Experiments are performed in a glass
tank (95 cm long, 45 cm thick, and 60 cm high) filled
with a linearly stratified salt solution with buoyancy fre-
quency N � 1:55 rad=s. A two-dimensional model topog-
raphy immersed in the tank [see Fig. 1(a)] has a slope and
length that can be varied; two topographies used in the
present work have the same slope St � 0:73 (correspond-
ing to a 36� angle) but different lengths L � 5:5 cm and
L � 18:4 cm. The dimension perpendicular to the paper is
W � 25 cm, sufficiently wide to yield two-dimensional
flow away from the edges.

Particle image velocimetry (PIV) is used to measure the
velocity field in a vertical plane. A laser light sheet (1 W
and 0.5 mm thick) illuminates fluid that is uniformly
seeded with TiO2 particles (�1–10 micrometers). Images
obtained with a resolution of 1004� 1004 pixels are ana-
lyzed by using an image correlation algorithm [15]. The
velocity field is obtained on a 100� 100 grid with an rms
error less than 5% over an area of 15� 15 cm2. Fluid
density is measured with a conductivity probe (Precision
Measurement Engineering); the conductivity probe and a
thermometer are mounted on a translation stage.
Fluorescent dye (Rhodamine 6G) is used to visualize ma-
terial transport and mixing.

To simulate oscillatory tidal flow, the topography is
oscillated sinusoidally in the horizontal direction with
amplitude A and frequency !; A and ! are experimental
analogs of the tidal excursion distance and tidal forcing
frequency, respectively. The maximum forcing velocity is
Vf � A!. To mimic oceanic conditions, A is made small
compared to the size of the topography, and A � 0:1 cm is
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used throughout the Letter except for data in Fig. 4(b). The
velocity measurements are made in the laboratory refer-
ence frame and are transformed to the frame of the oscil-
lating topography to facilitate interpretation.

Results.—Nonresonant and resonant waves generated by
tidal motion are illustrated in Figs. 1(a) and 1(b), respec-
tively. Since a fluid particle in an internal wave field moves
in the direction of wave propagation, the boundary condi-
tion ~V � n̂ � 0 (n̂ denotes the normal direction) can be
satisfied only where the local topographic slope matches
the wave slope: St� ~r� � Sw [8,9,16,17]. We define the
‘‘near-critical’’ region to be where jSt� ~r� � Swj< 0:09;
this region is indicated by gray shading in Fig. 1.

Waves are generated only in a near-critical region. In the
off-resonant case [Fig. 1(a)], the length of the near-critical
region is small, and the generated wave is weak. At reso-
nance, the wave is generated over the whole region of
constant slope and superposes to make a strong wave.
The wave strength increases with the increasing length of
the critical region [cf. Eq. (4)]. For example, the near-
critical region in Fig. 1(c) is 3.3 times as long as in
Fig. 1(b), and the resultant maximum kinetic energy den-
sity is 5 times as large.

The flow strength exhibits a strong maximum at the

forcing frequency that satisfies the resonant condition St ��������������������������������
!2
r=�N

2 �!2
r�

p
, as shown in Fig. 2. The half-width of the

resonance is �! � 0:05 rad=s. By combining this with (1)
and ! � 0:91 rad=s, we get �S � jSt � Swj � 0:06,
which means that a resonant wave is generated in the

FIG. 1 (color online). The horizontally oscillating topog-
raphy generates (a) a nonresonant internal wave when the
wave slope differs from the topographic slope (here Sw � 0:51
St) and (b) a resonant wave when the slopes are equal;
the oscillation frequency is 0:46 rad=s in (a) and 0:91 rad=s in
(b). A stronger resonant wave forms in (c), where the wave
and topographic slopes match for a larger distance—the
near-critical region lengths are 5.9 and 19.5 cm in (b) and (c),
respectively (other parameters are the same). The arrows are
instantaneous velocity vectors. The color represents the
normalized kinetic energy density in the wave jV̂�~r; t�j2 	
j ~V�~r; t�=Vfj

2; the color bar scales are different for each
panel. The phase of tidal forcing for all cases is shown in the
inset in (c). In (c), the imaging window covers only the top
part of the topography. Gravity is the �ẑ direction. Gray
shading indicates the region of near-critical topography (see
text).

FIG. 2 (color online). Flow strength, measured over the long
slope [Fig. 1(c)] as a function of the forcing frequency, is sharply
peaked at the resonant frequency where Sw � St; the red line is a
guide to the eye. The flow strength is represented by the
normalized kinetic energy density averaged for two oscillation
periods for the region in the green box region in the inset (�
3:1 cm<�< 2:66 cm and 0< �< 1 cm), where � and � are
axes parallel and perpendicular to the boundary, respectively. We
note that hV̂2i is a local measurement of kinetic energy in
baroclinic motion; this differs from the energy conversion rate
(see [5]), which is the globally integrated energy change from
barotropic to baroclinic motion.
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region 0:91< Sw=St < 1:09 (where St � 0:73�. Other rep-
resentations of the flow strength such as averaged shear
stress on the topography have been tested and yield similar
resonant behavior.

A resonantly generated internal wave has nontrivial
spatial and temporal properties [18], as Fig. 3 illustrates.
The phase of the forcing velocity and the normalized ve-
locity component along the slope V̂��~r; t� � V�� ~r; t�=Vf
are plotted in Figs. 3(a) and 3(b) for four points. The
velocity fields are periodic with the forcing period T and
are approximately a�=2 phase behind the forcing. There is
a phase variation ����� along the slope (e.g., between
points A and B) and a very small phase difference for
displacements perpendicular to the slope; ����� depends
linearly on �, ����� � k�, where k � 0:1 rad=cm for
�� in radians and � in centimeters. Measurements with
different slope lengths L indicate that k ’ 2=L. The varia-

tion of the velocity amplitude along the constant topo-
graphic slope is small. The flow is temporally periodic,
but the downslope flow is somewhat stronger and thinner
than the upslope flow, as the profiles of jV̂����j plotted in
Fig. 3(c) show. For points close to the boundary (e.g.,
points A and B), the downslope flow is stronger than the
upslope flow by about 10%; the reverse is true for points C
and D.

The fluid motion is confined to a thin boundary layer, as
shown in Fig. 3(c), where the layer thickness (HWHM) is
0.38 cm, 3 times that of a Stokes layer, whose thickness
would be

������������
2�=!

p
� 0:13 cm (� is the kinematic viscosity).

For a flow field sinusoidal in time and two-dimensional
in space, the linearized dynamical equations can be sim-
plified under the ‘‘boundary layer’’ approximation [19,20],
which assumes that the variation is much stronger across
the slope than along the slope, i.e., @� 
 @�. In the bound-
ary layer, the simplified equation can be written as
@��V�� � i��=2

�������������������
N2 �!2
p

�@����V��, which has the solu-
tion [20]

 V���; �; t� �
Vm

0:47
e���=2a� sin

� ���
3
p

2

�
a

�
cos�k��!t�; (2)

where

 a �
�

�

2k
�������������������
N2 �!2
p

�
1=3
’

�
�L

4
�������������������
N2 �!2
p

�
1=3

(3)

is the length scale in the �̂ direction and a � 0:34 cm for
L � 18:5 cm. An expression for the maximal velocity Vm
can be found by the following consideration. As the to-
pography oscillates, material is transported from one side
of the shelf break to the other. From the motion of the
boundary, the maximal instantaneous material flux can be
estimated as F � VfWL sin� � VfWL

!
N . At resonance,

the flow field is dominated by the boundary flow, and an
estimate of the maximal material flux is given by integrat-
ing across the boundary flow from � � 0 to � � 3:5a: F �

VfW
R

3:5a
0

Vm
0:47 e

���=2a� sin�
��
3
p

2
�
a�d� � Vf

Vm
0:47 aW. By equat-

ing the two expressions for flux and using (3), we obtain a
scaling relation for the dependence of the maximum ve-
locity on the length L of a near-critical region:

 Vm � 0:75
!
N

� �������������������
N2 �!2
p

�

�
1=3
L2=3: (4)

The velocity profile predicted by (2) using parameters
calculated from (3) and (4) is in good accord with mea-
surements in the boundary layer (� < 1 cm) [see Fig. 3(c)].
Further, in typical ocean conditions where a semidiurnal
wave (! � 1:45� 10�4 rad=s) is generated at a continen-
tal slope at angle � � 2� (!=N � 0:035), we obtain Vm �
14:4 for L � 200 m. This large effect for a constant topo-
graphic slope only 200 m long indicates that the resonant
waves should be important in many places in the oceans.

FIG. 3 (color online). Spatiotemporal characteristics of the
resonantly generated wave measured over the large topography
[Fig. 1(c)]. (a),(b) Time series of the normalized along-slope
velocity component at locations ��; �� shown in the inset in (c):
A � ��2:27; 0:38�, B � �1:99; 0:38�, C � ��2:27; 0:69�, and
D � �1:99; 0:69�, in units of centimeters. The phase of the
forcing is shown by black lines for reference. Time is normalized
by the forcing period. (c) Profile of jV̂����j for maximum
upslope and downslope flow through the line through B and
D. The blue line is generated from Eq. (2) with the experimen-
tally determined a � 0:34 cm, k��!t � 0, and Vm � 14:7.
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The resonantly generated internal wave causes strong
shear above the topography because of the large velocity
and small length scale. The strong shear causes an inver-
sion in the density gradient even with weak forcing (e.g.,
A � 0:1 cm), as shown by a snapshot of a dye line in
Fig. 4(a). The overturning happens only in a small region
� < 0:4 cm, which leads to a small Rayleigh number and
hence a small growth rate for convective instability. The
flow then reverses, and the isopycnals stabilize before the
perturbations grow to large amplitude; hence, the flow
remains laminar, and no wave breaking or mixing is ob-
served. This is consistent with Thorpe’s analysis and ex-
periments on standing waves [21].

Increasing the forcing amplitude leads to a linear in-
crease of fluid velocity up to about A � 0:4 cm, while the
thickness of the boundary layer remains approximately
unchanged. Then the time-averaged Richardson number
is low enough, hRiit � hN2=�dV=dz�2it � 0:08, for shear
instability, and Kelvin-Helmholtz billows form, as illus-
trated in Fig. 4(b). These billows eventually break and
cause mixing.

Conclusion.—Our experiments have shown that strong
resonant internal waves are generated by periodic tidal-like
flows over a long topographic slope which has an angle
close to the internal wave propagation angle (i.e., St �
Sw). The maximal boundary layer velocity increases as
L2=3, where L is the length of the near-critical region;
this result needs to be taken into account in theoretical

models [5]. The resonant flow is confined to a region about
3 times as thick as the Stokes boundary layer; downslope
flow is slightly faster and thinner than upslope flow. The
strong shear perpendicular to the slope leads to density
inversion and the formation of Kelvin-Helmholtz billows.

This work provides a new explanation of the intense
boundary flows observed on continental slopes when St �
Sw [10,14,22]. The conventional explanation is that such
flows are created by critical reflection of remotely gener-
ated internal waves [10,14]. The intense boundary currents
strongly affect material transport by sustaining turbidity
currents [13] and generating nepheloid layers (particle-rich
layers above the ocean floor) [11,12]. These strong currents
also play a role in shaping the continental slopes [10].
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FIG. 4 (color online). (a) Distortion of an isopycnal line by
resonant wave near the boundary (A � 0:1 cm). The flow is
visualized by using fluorescent dye illuminated by a vertical
light sheet; the dye was deposited in a horizontal layer before the
experiment. (b) Kelvin-Helmholtz billows form for A � 0:4 cm.
This flow is visualized by laying a thin layer of dye along the
slope before the experiment. The phase of forcing is shown in the
inset in (b); the phase for (a) is �=2 ahead.
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