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High-precision results are presented for calculations of the nonrelativistic energies, relativistic
corrections, and quantum electrodynamic corrections for the 2 2S, 2 2P, and 3 2S states of Li and Be�,
using nonrelativistic wave functions expressed in Hylleraas coordinates. Bethe logarithms are obtained for
the states of Be�. Finite mass corrections are calculated with sufficient accuracy to extract the nuclear
charge radius from measurements of the isotope shift for the 2 2S� 2 2P and 2 2S� 3 2S transitions. The
calculated ionization potential for Be� is 146 882:923� 0:005 cm�1.
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The past few years have seen remarkable advances in
our ability to achieve spectroscopic accuracy for the en-
ergies and transition frequencies of lithium and the lith-
iumlike ions (or more generally four-body systems). The
dominant sources of uncertainty are the higher-order quan-
tum electrodynamic (QED) corrections, rather than the
accuracy of calculations for the basic nonrelativistic en-
ergy and leading relativistic corrections. This work builds
on the much longer history of high-precision calculations
for helium and other three-body systems [1–3]. Here we
present results suitable for the interpretation of QED shifts
and isotope shifts in Li and Be�

The key to obtaining high-precision results that are
essentially exact for all practical purposes (in the sense
that hydrogenic wave functions and energies are ‘‘exact’’)
is the use of explicitly correlated variational wave func-
tions in Hylleraas coordinates. This is a specialized method
that has been fully implemented only for the two- and
three-electron cases [4–6]. The results are more accurate
by many orders of magnitude than the well-known and
generally applicable methods of atomic physics, such as
configuration interaction. The high accuracy opens the
possibility of using the results in combination with high-
precision experiments to create unique measurement tools.
A prime example is the use of the calculated isotope shift in
combination with isotope shift measurements to determine
the nuclear charge radius of short-lived halo nuclei such as
6He, 8He, and 11Li [7,8]. New experiments are in progress
at GSI [9] and at RIKEN [10] for 11Be�, where the isotope
shift in the 2 2S1=2 � 2 2PJ transitions will be used.
Another example is the testing of the higher-order relativ-
istic and QED corrections to the transition frequencies in
atomic systems more complicated than hydrogen. The
theory of these effects is still under active development
[11–13]. The Bethe logarithm that appears in the lowest-
order electron self-energy [14,15] remains one of the most
difficult parts of the calculation.

In a previous sequence of papers [1,16–19], we have
obtained high-precision results for transitions among the

2 2S1=2, 2 2PJ, and 3 2S1=2 states of lithium. More recently,
Puchalski et al. [20] have confirmed these results and
improved the accuracy of the relativistic recoil corrections.
They have also obtained a significant correction to the
isotope shift in the case of 11Li due to nuclear polarization.
In the present work, we present high-precision results for
the low-lying states of Be�. The results will form the
theoretical basis for the interpretation of the planned iso-
tope shift measurements [9,10] in terms of the nuclear
charge radius for the radioactive isotopes 7Be, 10Be, and
11Be relative to stable 9Be. The 11Be case is especially
important and interesting because it is the simplest ex-
ample of a halo nucleus containing just a single halo
neutron. We also improve our previous results for Li by
using much larger basis sets containing up to 9577 terms,
and by implementing an absolutely convergent method
[21] to eliminate numerical instabilities in the calculation
of slowly convergent integrals required for the hp4i term in
the Breit interaction. This brings our results into agreement
with those of Pachucki et al. [20] for Li.

For our purposes, the three key parameters controlling
the energy levels are �, �, and �rc, where � is the fine
structure constant, � � �=M � m=�m�M� is the ratio of
the reduced electron mass to the nuclear mass, and �rc is the
rms nuclear charge radius for a particular isotope. In terms
of these parameters, the theoretical contributions to the
energy levels of an atom or ion such as Be� can be
expanded in the form

 

E � E�0�NR � �E
�1�
NR � �

2E�2�NR � �
2�E�0�rel � �E

�1�
rel �

� �3�E�0�QED � �E
�1�
QED� � �

4�E�0�ho � �E
�1�
ho �

� �r2
c�E
�0�
nuc � �E

�1�
nuc� � � � � (1)

in units of �2�c2 � �2�1� ��mc2, where the subscripts
denote the nonrelativistic energy (NR), relativistic correc-
tions (rel), quantum electrodynamic corrections (QED),
higher-order QED corrections (ho), and finite nuclear
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size corrections (nuc). The factor of 1� � accounts for the
normal isotope shift.

There are two contexts in which this equation can be
applied. First, for total transition frequencies, the dominant
source of uncertainty comes from the higher-order QED
term �4E�0�ho , where here and throughout the superscript
denotes the power of �. A comparison with experiment
therefore provides an effective measurement of this term,
assuming that the lower-order terms are known to sufficient
accuracy. Second, for isotope shifts, the terms independent
of � do not contribute (except for the last �r2

c term), and the
term �4�E�1�ho contributes only at the level of a few kHz, and
so a simple one-electron estimate is sufficient. To sufficient
accuracy, the expression for the isotope shift between
isotopes A and B in the same atomic state is then
 

�E�B� A� � ��	E
�1�
NR � E�0�NR � ���E

�2�
NR � E�1�NR�

� �2�E�1�rel � E�0�rel � � �
3�E�1�QED � E�0�QED�

� �4�E�1�ho � E�0�ho �
 � � �r
2
c;B � �r2

c;A�E
�0�
nuc; (2)

where �� � ��=M�B � ��=M�A. Since all coefficients
can now be calculated to sufficient accuracy, it is clear
that the difference between theory and experiment for the
isotope shift in a particular atomic transition (without the
�rc terms) yields the rms nuclear charge radius for isotope B
relative to a known isotope A.

The expansion coefficients in Eq. (1) all have a simple
physical meaning. E�0�NR is the eigenvalue corresponding
to the Schrödinger equation for infinite nuclear mass,
and �E�1�NR and �2E�2�NR are the first- and second-order per-
turbation corrections due to the mass polarization oper-
ator HMP � ��

P3
i>jri � rj contained in the total

Hamiltonian H � H�0� �HMP. The leading relativistic
term �2E�0�rel follows from the matrix element
h��0�jBj��0�i, where B is the usual Breit interaction [17]
and ��0� is the wave function for infinite nuclear mass. The
relativistic finite mass correction term �2�E�1�rel contains
contributions from (a) the mass scaling of the terms in B,
(b) perturbative corrections to the wave function ��0� due
to the mass polarization operator, and (c) recoil corrections
resulting from the transformation of the Breit interaction to
center-of-mass plus relative coordinates, as first derived by
Stone [22] (see Yan and Drake [17]). This term is not so
well known, and is often neglected in atomic structure
calculations.

The leading QED term �3E�0�QED consists of both an
electron-nucleus contribution and an electron-electron
contribution, denoted previously by E�0�L;1 and E�0�L;2
[18,19]. The calculation of these terms is straightforward,
with the exception of the Bethe logarithm contained in the
expression

 E�0�L;1 �
4

3
Z�3h��ri�i�0�

�
ln�Z���2 � ��0��nL� �

19

30

�
; (3)

where ��0��nL� � ln�k0=Z2R1� is Bethe’s mean excitation
energy for the n 2L state in question for infinite nuclear
mass, and a sum over i � 1, 2, 3 is assumed. It is difficult to
calculate because it involves virtual excitations summed
over all intermediate states, with the dominant contribu-
tions lying high in the photoionization continuum. We have
recently solved this problem for the cases of helium [15]
and lithium [19] by introducing a discrete variational basis
set for the intermediate pseudostates that spans a huge
range of distance scales. Our results for Be� are further
discussed below.

The finite mass term �3E�1�QED contains all the reduced

mass and recoil corrections E�1�L;1 and E�1�L;2 to be expected

from E�0�L;1 and E�0�L;2, as well as radiative recoil terms as
discussed previously [18,23]. These are all straightforward
to calculate with the exception of the finite mass correction
��1��nL� as further discussed below. The higher-order QED
terms �4E�0�ho and the finite mass corrections �4E�1�ho are
estimated from the dominant hydrogenic terms, corrected
for the electron density at the nucleus, as described in
detail previously [18,20]. Finally, the finite nuclear size
correction is given by

 �r 2
cE
�0�
nuc �

2�Ze2

3
�r2
ch��ri�i�0� (4)

together with a negligibly small finite mass correction.
The method of generating the wave functions is the same

as the multiple basis set method originally developed by
Yan and Drake [16], and subsequently used in a sequence
of other papers, including the recent work by Puchalski and
Pachucki [5]. The key idea is to start with a fully correlated
variational basis set in Hylleraas coordinates of the form

 rj1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e

��r1��r2��r3YLM
�‘1‘2�‘12;‘3

�r1; r2; r3��1;

(5)

where YLM
�‘1‘2�‘12;‘3

is a vector-coupled product of spherical
harmonics for the three electrons to form a state of total
angular momentum L, and �1 is a spin function with spin
angular momentum 1=2. The basis set is then replicated
several times with different nonlinear scale parameters �,

TABLE I. Bethe logarithms, expressed in the form � � ��0� �
��=M���1� � ln�Z2�=m�.

Atom/ion ��0� ��1�

Li�1s22s 2S� 2.981 06(1) 0.113 05(5)
Li�1s23s 2S� 2.982 36(6) 0.1105(3)
Li�1s22p 2P� 2.982 57(6) 0.1112(5)
Li��1s2 1S� 2.982 6246a 0.109 55(4)a

Be��1s22s 2S� 2.979 26(2) 0.125 58(4)
Be��1s23s 2S� 2.981 62(1) 0.1171(1)
Be��1s22p 2P� 2.982 27(6) 0.1217(6)
Be2��1s2 1S� 2.982 5031a 0.116 93(4)a

aDrake and Goldman [15].
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�, and �, and the scale parameters fully optimized for each
sector. The wave function ��0� is then a linear combination
of such terms with variationally determined coefficients so
as to minimize the energy. The method is numerically
stable, requiring at most quadruple precision arithmetic.
Our best variational bounds for the ground states with 9577
terms in the basis set are

 

E�0�NR�Li; 2 2S� � �7:478 060 323 892 4

E�0�NR�Be�; 2 2S� � �14:324 763 176 766 8:

The result for Li is slightly lower than that obtained by
Puchalski and Pachucki [5], while the result for Be� is
much more accurate than any previous calculation.

The calculation of the Bethe logarithm is the most
difficult part of the calculation. The 2 2S state requires a
summation over only the virtual n 2P states, but the 2 2P
state requires complete sets of 2S, 2Pe, and 2D intermediate
states. These lengthy calculations will be described else-
where. We quote here only the final results in Table I. Note
that with the ln�Z2� term subtracted, the numbers are all
nearly equal, and close to the value 2.984 128 56 for the
ground state of hydrogen.

We turn now to a discussion of the final results and their
significance. Table II lists the total expansion coefficients
for each power of �, defined by E�k�tot � E�k�NR � �

2E�k�rel �

�3E�k�QED � �
4E�k�ho . Since � ’ 10�4, the sum E �P2

k�0 �
kE�k�tot gives the total energy accurate to a few parts

in 1012 for any particular isotope. The values of the nuclear
masses are as listed in Ref. [24], with the exception of the
more recent measurements for 11Li and 11Be by Bachelet

et al. [25]. Their values are 11.043 716(5) u and 11.021
654(4) u, respectively.

Table III compares theory and experiment for the calcu-
lated transition frequencies for the stable isotopes 7Li and
9Be�. It is particularly noteworthy that the ionization
potential for Li is now in good agreement with the recent
high-precision measurement of Bushaw et al. [28], but
there is a substantial disagreement with the NIST tabula-
tion for the ionization potential of 9Be�. In view of the
good agreement for the other transitions, it seems likely
that the theoretical ionization energy of 146 882.923(5)
cm�1 is more accurate than the experimental value by an
order of magnitude.

For purposes of applying the calculated results to the
relative determination of nuclear charge radii, it is conve-
nient to express the results in the form

 �	B�A � �	�0�B�A � C	��rc;B�
2 � ��rc;A�2
; (6)

where the left-hand side is the total (measured) isotope
shift between isotopes A and B for some atomic transition
frequency, �	�0�B�A is the calculated isotope shift excluding
the effect of finite nuclear size, andC represents the change
in the coefficient E�0�nuc defined in Eq. (4). For completeness,
we give updated results for �	�0�B�A in Table IV for the
transitions in Li, as well as new results for Be�. With the
inclusion of the nuclear polarization correction calculated
by Pachucki [20] for the 3 2S� 2 2S transition in 11Li
relative to 7Li, the results agree to within the estimated
uncertainty of his value 25 101.473(9) MHz. The corre-
sponding �	�0�B�A and C parameters for Be� have not been
published before. The values of the C coefficient for the

TABLE II. Total coefficients for various transitions in Li and Be�. Units are a.u.

Atom/ion transition E�0�tot E�1�tot E�2�tot

Li�2 2P1=2 � 2 2S1=2� 0.067 915 6344(29) �0:122 990 87�7� �0:004 236�3�
Li�2 2P3=2 � 2 2S1=2� 0.067 917 1624(29) �0:122 995 47�7� �0:004 236�3�
Li�3 2S1=2 � 2 2S1=2� 0.123 970 5407(35) �0:133 764 36�3� 0:123 6596�6�
Li�2S1=2� I.P. 0.198 158 5744(26) �0:211 012 55�3� 0:235 2863�6�
Be��2 2P1=2 � 2 2S1=2� 0.145 504 341(25) �0:432 048 23�7� �0:094 75�14�
Be��2 2P3=2 � 2 2S1=2� 0.145 534 287(25) �0:432 101 32�7� �0:094 75�14�
Be��3 2S1=2 � 2 2S1=2� 0.402 040 134(26) �0:425 861 69�7� 0:339 983 00�2�
Be��2 2S1=2� I.P. 0.669 290 555(24) �0:701 626 33�7� 0:721 963 94�1�

TABLE III. Comparison between theory and experiment for the total transition frequencies of 7Li and 9Be�. Units are cm�1.
Numbers in square brackets are reference numbers.

Atom/ion 2 2P1=2 � 2 2S1=2 2 2P3=2 � 2 2S1=2 3 2S1=2 � 2 2S1=2 2 2S1=2 I.P.
7Li (this work) 14 903.6479(10) 14 903.9832(10) 27 206.0930(10) 43 487.1583(10)
7Li (experiment) 14 903.648 130(14) [26] 14 903.983 648(14) [26] 27 206.094 20(10) [27] 43 487.159 40(18) [28]
Difference �0:0002�10� �0:0004�10� �0:0012�10� �0:0011�10�
9Be� (this work) 31 928.738(5) 31 935.310(5) 88 231.920(6) 146 882.923(5)
9Be� (experiment) 31 928.744 [29] 31 935.320 [29], 31 935.310(47) [10] 88 231.915 [29] 146 882.86 [29]
Difference �0:006�5� �0:010�5�, 0.000(47) 0.005(6) 0.063(5)
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transitions in Be� are C�2 2P� 2 2S� � 16:912 MHz=fm2

and C�3 2S� 2 2S� � 10:376 MHz=fm2.
Turning now to the fine structure splittings, the splitting

isotope shift (SIS) provides an important consistency check
on the experimental data because the theoretical value is
nearly independent of both QED and nuclear volume ef-
fects, but there remain serious disagreements between
theory and experiment. The best studied example is the
isotope shift in the 2 2P3=2 � 2 2P1=2 splitting, where the
predicted value is larger in 7Li than in 6Li by 0.396 MHz
(from Table IV), but there is a large amount of scatter in the
experimental values. The two most recent measurements
yield�0:863�79� MHz [30] and�0:155�77� MHz [31], in
clear disagreement with each other, and with theory. The
predicted SIS for 11Be� relative to 9Be� is 3.878 MHz. The
planned isotope shift measurements for Be� at ISOLDE
will provide an important new opportunity to measure the
SIS and compare with theory.

In summary, this Letter sets a new standard of accuracy
for the comparison between theory and experiment for
transition frequencies of Be�, and it establishes the theo-
retical framework needed to interpret isotope shifts in
terms of the nuclear charge radius of the single-neutron
halo isotope Be�. It seems likely that the calculated ion-
ization energy of 9Be� is more accurate than the experi-
mental value by an order of magnitude. However, there
remains a significant problem in case of the SIS for lithium,
where the experimental values do not agree with each other
or with theory. Further measurements in Be� may help to
resolve the discrepancy.
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TABLE IV. Calculated isotope shift parameter �	�0�B�A for
various transitions in Li and Be�. Units are MHz.

Isotopes 2 2P1=2 � 2 2S 2 2P3=2 � 2 2S 3 2S� 2 2S

7Li� 6Li �10 532:111�6� �10 532:506�6� �11 452:821�2�
7Li� 8Li 7940.627(5) 7940.925(5) 8634.989(2)
7Li� 9Li 14 098.840(14) 14 099.369(14) 15 331.799(13)
7Li� 11Li

a 23 082.642(24) 23 083.493(24) 25 101.470(22)
9Be� 7Be �49 225:765�19� �49 231:814�19� �48 514:03�2�
9Be� 10Be 17 310.44(6) 17 312.57(6) 17 060.56(6)
9Be� 11Be 31 560.01(6) 31 563.89(6) 31 104.60(6)

aIncludes nuclear polarization corrections [20] of 62 kHz for the
2 2PJ � 2 2S transitions, and 39 kHz for the 3 2S� 2 2S
transition.
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