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The lightest QCD resonance, the �, has been recently fixed in the �� scattering amplitude. The nature
of this state remains nowadays one of the most intriguing and difficult issues in particle physics. Its
coupling to photons is crucial for discriminating its structure. We propose a new method that fixes this
coupling using only available precise experimental data on the proton electromagnetic polarizabilities
together with analyticity and unitarity. By taking into account the uncertainties in the analysis and in the
parameter values, our result is �pole��! ��� � 1:2� 0:4 keV.
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The lowest resonance in the QCD spectrum has the
quantum numbers of the vacuum and is usually called the
�. The mass and width of this state has been recently fixed
with a precision of just tens of MeV in Ref. [1] using an
analytic continuation into the complex energy plane of the
isopin I � 0 and angular momentum J � 0 �� partial
wave scattering amplitude. On the first Riemann sheet of
the energy plane, the S matrix has a zero at E �
��441�16

�8 � � i�272�9
�12�� MeV, which reflects the � pole

on the second sheet at the same position. This is also a
zero at E	 in the inverse of the �� partial wave S matrix
S � 1� 2i��t�T�t� on the first Riemann sheet. Here

 T�t� �
1

��t� cot���t�� � i��t�
; (1)

where ��t� is the scalar-isoscalar �� phase shift, ��t� ������������������������
1� 4m2

�=t
p

, and t � E2. This result has been confirmed in
Ref. [2] with the position of the � pole at E � ��484�
17� � i�255� 10�� MeV. The relevance of these results
has to be emphasized in view of the special role played
by the � in the QCD dynamics and in the QCD non-
perturbative vacuum structure.

Although the pole dominance of the � in the scalar-
isoscalar �� amplitude is apparent in a wide energy region
around its position, its existence is somewhat masked by
the effects of its large width. For a narrow resonance, there
is an observable connection between the phase dependence
of the physical amplitude on the real axis and the one in the
complex plane, as one crosses the pole position. This
connection is, however, lost in the case of the � with
such a large width: One does not observe either a rapid
variation of the amplitude phase [3] or a Breit-Wigner type
behavior around the resonance position. This enormous
difference in the behavior of the amplitude as one moves
away from the real axis is what has made the � existence
and location so uncertain for so long.

Yet the important question about what is the nature of
the � remains unanswered [4–12]. What is its role in the
chiral dynamics of QCD? Is it a �q-q state? Is it a �-�

molecule? Is it a �qq�-�qq� tetraquark? Is it a glueball
state? How is it possible to distinguish these different sub-
structures? Two photon interactions can shed some light on
this question from the size of the �! �� width [13]. This
is because this width is proportional to the square of the
average electromagnetic charge of their constituents, while
its absolute scale depends on how these constituents form
the �. Recently, the authors of Refs. [14,15] have calcu-
lated the �� ! ����I�0;2 amplitudes using twice-
subtracted dispersion relations, in order to weigh the low-
energy region in the dispersive integrand. Their results take
into account the now well known �� final state interac-
tions which contain the � pole in the scalar-isoscalar con-
tribution. For the width of the � into two photons, they
obtain 4:09� 0:29 keV in Ref. [14] and 1:68� 0:15 keV
in the improved approach of Ref. [15]. Although the ap-
proach and methodology [16] are very similar in these two
calculations, there is an apparent discrepancy. Its origin is
discussed in Ref. [15]. The different input used for the
dispersive calculation of the production amplitudes of
��! �� and the use of different values for the position
of the � pole on the second Riemann sheet t� and its
coupling to two pions g��� are equally responsible.
Notice that, although these last two inputs are not required
in the dispersive calculation, the �! �� width obtained
in Refs. [14,15] depends critically on them [15].

The experimental results on the �� ! �� process are
scarce and, in order to extract information on the �,
unfortunately theoretically contaminated by the Born
term in the charged pion channel and by the isospin I �
2 amplitude in all cases, interfering with the I � 0 ampli-
tude in the cross section [3]. The purpose of this Letter is to
point out that the coupling g��� of the � meson found in
the �� scattering amplitude [1,2] is a measurable quantity,
directly obtainable from the nucleon electromagnetic po-
larizabilities, and that it can be extracted with good preci-
sion from existing experimental values. This differs from
the analysis in Ref. [17], where the properties of the �
meson of a Nambu–Jona-Lasinio model are used. The
argument proceeds as follows. Besides the mass, electro-
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magnetic charge, and magnetic moment, the electric � and
magnetic � polarizabilities structure constants determine
the Compton scattering amplitude [18,19] and the differ-
ential cross section up to second and third order in the
energy of the photon, respectively. The available experi-
ments of Compton scattering on protons and neutrons at
low energies can be analyzed [20,21] in terms of � and �,
with the sum �� � constrained by the sum rule obtained
from the forward dispersion relation [22]. The results are
�expt � 12:0� 0:6 and �expt � 1:9
 0:5 for protons and
�expt � 11:6� 1:5 and �expt � 3:7
 2:0 for neutrons.
Here and in the rest of the Letter, polarizabilities are given
in 10�4 fm3 units.

A separate theoretical determination of � and � needs
more ingredients than the ones present in the forward sum
rule. The authors of Ref. [23] investigated this problem by
using a backward dispersion relation for the physical spin-
averaged amplitude. The corresponding sum rule for ��
� contains contributions from an s-channel part and a
t-channel part. The first is related to the multipole content
of the total photoabsorption cross section, whereas the
t-channel part is related with the imaginary part of the
amplitude through a dispersion relation for t, as shown in
Ref. [24]. This imaginary part of the amplitude is given by
the processes �� ! �� and ��! N �N via a unitarity
relation. The result is the Bernabéu-Ericson-
Ferro Fontan-Tarrach (BEFT) sum rule
 

�� � �
1

2�2

Z 1
�th

d�

�2

��������������������
1� 2

�
Mp

s

� ����� � yes� � ���� � no��

�
1

�2

Z 1
4m2

�

dt

4M2
p � t

��t�

t2

�
jf0
��t�jjF

0
0�t�j

�
�4M2

p � t��t� 4m2
��

16
jf2
��t�jjF

2
0�t�j

�
; (2)

where Mp is the proton mass, the partial wave helicity
amplitudes f0

��t� and f2
��t� for N �N ! �� are Frazer and

Fulco’s [25], and the partial wave helicity amplitudes F0
0�t�

and F2
0�t� for ��! �� are defined as in Ref. [26]. The

absorptive part in the s-channel contribution is obtained
from that of the forward physical amplitude by changing
the sign of the nonparity flip multipoles (�� � no). A
reliable evaluation of this s-channel integrand [21] gives
��� ��s � ��5:0� 1:0� for protons and neutrons. The
importance of the t-channel contribution was already em-
phasized in Ref. [24] and the connection of ��� ��t to the
isoscalar s-wave ��! �� amplitude F0

0�t� pointed out.
The ‘‘experimental’’ ��� ��t is thus 15:1� 1:3 for pro-
tons and 12:9� 2:7 for neutrons, compatible with the
isoscalar selection imposed by the t-channel sum rule. It
is remarkable that the products of helicity amplitudes
appearing in Eq. (2) are the products of their moduli, which
might take negative values if the phases of these ampli-
tudes differ from the �� phase shift in an odd number of

�’s. The d-wave contribution is much smaller than the
s-wave one; hence, it is a good approximation to take
only the Born term in the crossed channel [27], and this
leads to ��� ��t2 � �1:7. Therefore, the experimental
quantity to be compared with the result of the integral
term containing F0

0�t� in Eq. (2) is ��� ��t0 � �16:8�
1:3�. The input jF0

0�t�j amplitude in that integral is what we
want to fix from this experimental value. The Frazer-Fulco
jf0
��t�j amplitude is known with sufficient accuracy for our

purposes from Ref. [28], and we have assigned a 20%
uncertainty to the theoretical ��� ��t0 determination
from the uncertainty of jf0

��t�j. Notice that the 1=t2 factor
in the integrand of Eq. (2) makes the well known low-
energy and, to a lesser extent, intermediate-energy contri-
butions the dominant ones.

On the physical sheet, we use the twice-subtracted dis-
persion relation [16]

 F0
0�t� � L�t� ���t�

�
ct�

t2

�

Z 1
4m2

�

dt0

t02
L�t0�Im��1�t0�
t0 � t� i"

�
;

(3)

where c is a subtraction constant fixed by chiral perturba-
tion theory (CHPT) [16,29], c � �=48�f2

�, with � ’
1=137 the fine-structure constant and f� � 92:4 MeV the
pion decay constant,

 ��t� � exp
�
t
�

Z 1
4m2

�

dt0

t0
��t0�

t0 � t� i"

�
(4)

is the scalar-isoscalar��Omnès function [30] which gives
the correct right-hand cut contribution, and L�t� is the left-
hand cut contribution. In this way we ensure unitarity, the
correct analytic structure of F0

0�t�, and that the � pole
properties enter through the scalar-isoscalar phase shift
��t� from T�t� in (1). Here we shall use a simple analytic
expression for T�t�, compatible with Roy’s equations,
which takes a three-parameter fit from Ref. [2] including
both low-energy kaon data and high-energy data. This fit is
valid up to values of t of the order of 1 GeV2, which is
enough in the integrand of the polarizability sum rule in
Eq. (2).

At the � pole position on the first Riemann sheet
[3,14,15]

 F0
0�t�� � e2

���
6
p g���

g���

1

2i��t��
; (5)

where e is the electron charge, g2
��� is the residue of the

�� scattering amplitude at the � pole on the second
Riemann sheet, and g���g��� is proportional to the resi-
due of the ��! �� scalar-isoscalar scattering amplitude
on the second Riemann sheet. The proportionality factors
are such that g��� and g��� agree with those used in
Refs. [3,14]. The pole width is given by [3,14]

 �pole��! ��� �
�2j��t��g2

���j

4M�
(6)
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that agrees, modulo normalizations, with that of Ref. [15].
This is not the observable radiative width that would be
associated with a possible Breit-Wigner resonance in the
physical ��! ����I�0 amplitude. However, in order to
discuss the structure of the �, one has to move around the
pole, and �pole��! ��� is the appropriate one.

Because of Low’s low-energy theorem [18], the ampli-
tude F0

0�t� is given by the Born term at low energies. Then,
as a first approximation, we consider the left-hand cut
contribution L�t� in (3) to be the Born contribution LB�t�
to the crossed channel describing the pion Compton scat-
tering ��! ��:

 LB�t� � e2 1� ��t�2

��t�
log

�
1� ��t�
1� ��t�

�
: (7)

Inserted into the dispersion relation in Eq. (3), this contri-
bution leads [16,27] to a Born amplitude F0

0�t�jB for the
annihilation channel ��! �� dressed with�� final state
interactions. Thus, this F0

0�t�jB includes the � and is com-
patible with unitarity and analyticity.

The evaluation of the sum rule in Eq. (2) with this
F0

0�t�jB results in a value of ��� ��t0jB � 6:7� 1:2,
much smaller than the experiment. The quoted uncertainty
stems from the uncertainties in the input data needed for
the sum rule in Eq. (2). The main reason for this small
value is the presence of a zero in the integrand of that sum
rule at a moderate t value of t0 ’ 0:30 GeV2, as shown in
Fig. 1. The amplitude F0

0�t�jB, when analytically continued
to complex t, has the� pole in the second Riemann sheet at
t � t� � f��474� 6� � i�254� 4�� MeVg2 with g��� �
��452� 4� � i�224� 2�� MeV and on the first Riemann
sheet leads to g���=g���jB � �0:49�0:03

�0:01� � i�0:37�
0:03� and �pole��! ���jB � 2:5� 0:2 keV. These re-
sults are, however, not adequate for reproducing the ex-
perimental nucleon electromagnetic polarizabilities, as we

have seen, and the pion Compton scattering description has
to go beyond the Born approximation LB�t�, with a modi-
fication of the left-hand cut L�t� contribution in Eq. (3).

At intermediate energies, this modification is due to
resonance exchanges �� with the leading ones being
R � a1, �, and ! [15,16]. The a1 exchange contribution
to L�t� is

 LA�t� � e2 C

32�f2
�

�
t�

M2
a1

��t�
log

�
1� ��t� � tA=t
1� ��t� � tA=t

��
; (8)

while the � and ! resonances exchange contribution to
L�t� in nonet symmetry (M� � M! � MV ’ 782 MeV) is

 LV�t� � e2 4

3
R2
V

�
t�

M2
V

��t�
log

�
1� ��t� � tV=t
1� ��t� � tV=t

��
; (9)

with tR � 2�M2
R �m

2
��. The low-energy limit of LV�t�

goes as t2, and we fix R2
V � 1:49 GeV�2 by using the

well known !! �� decay. Though the low-energy limit
of LA�t� goes as t and corresponds to the pion electromag-
netic polarizability � ��� ����� or equivalently to L9 �
L10 � �1:4� 0:3� � 10�3 in CHPT [31], we consider
LA�t� as an effective contribution for moderate higher
values of t with C a real constant to be determined phe-
nomenologically and not connected to the pion polariz-
ability. This is supported by the fact that the a1 ! ��
coupling is not so well known at intermediate energies.
We fix C by requiring that the experimental value of ���
��t0 is reproduced within 1.5 standard deviations of the
total uncertainty when L�t� in (3) is given by L�t� �
LB�t� � LA�t� � LV�t�. This procedure leads to C �
0:59� 0:20, and the integrand of the sum rule is given in
Fig. 1 as a continuous line. Notice that C has to be positive
in order to match the experimental value of ��� ��t0 and
that the zero at t0 in the dressed Born amplitude has clearly
disappeared. Moreover, in spite of the fundamental dynam-
ics of the � resonance in the t-channel polarizability sum
rule, there is no trace of a resonant Breit-Wigner-type
behavior when going to the physical real t axis; see Fig. 1.

The low-energy �� ! �0�0 cross sections obtained for
the two cases studied above are similar [15]. The central
values are compatible with the data for values of t below
�450 MeV�2 and are above the data but compatible within
2 standard deviations for larger values of t up to
�600 MeV�2 and within 1 standard deviation for t between
�600 MeV�2 and �800 MeV�2.

When F0
0�t� is analytically continued to the complex

plane, at t� on the first Riemann sheet one gets
g���=g��� � �0:23�0:05

�0:09� � i�0:30� 0:03�, which has a
smaller absolute value when compared with
g���=g���jB and leads to �pole��! ��� � �1:0�
0:3� keV. This is the main result of this Letter. The error
quoted here is from the uncertainties in the experimental
value of ��� ��t0 and the inputs of the sum rule (2) only.

In order to obtain the rest of the uncertainty, we modify
the � properties in the pion scattering as follows. We still
use the three-parameter fit formula including low-energy

5 10 15 20 25

t

mπ
2

0

0.5

1

1.5

2

2.5

10 4 fm3

mπ
2

FIG. 1 (color online). The integrand of ��� ��t0 in (2). The
dashed line is when using L�t� � LB�t� in (3) and the continuous
line is when using L�t� � LB�t� � LA�t� � LV�t� in (3) as ex-
plained in the text.
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kaon data and high-energy data for cot���t�� in Ref. [2] as
input in the amplitude T�t� but with parameter values
slightly modified in order to reproduce the � pole position
t� � f��441� 6� � i�272� 4�� MeVg2 found in Ref. [1].
In that case, we get g��� � ��480� 7� � i�191�
3�� MeV. With this T�t� and the dressed Born amplitude
in (3), one gets ��� ��t0jB � 6:1� 1:1, g���=g���jB �
�0:57� 0:02� � i�0:41� 0:03�, and �pole��! ���jB �
3:8� 0:4 keV. The integrand of ��� ��t0 in (2) for this
case is very similar to the dashed line of Fig. 1. The
effective value of C in (8) moves to C � 0:62� 0:20
when fixed to reproduce the experimental value of ���
��t0 within 1.5 standard deviations of the total uncertainty.
With this new C, the analytic continuation to the new t�
gives g���=g��� � �0:31�0:05

�0:07� � i�0:32� 0:03� and
�pole��! ��� � 1:5� 0:4 keV. Again, the integrand of
��� ��t0 in (2) for this case is very similar to the continu-
ous curve of Fig. 1.

As a final result for the electromagnetic pole width of the
� found in the �� scattering amplitude, we quote

 �pole��! ��� � 1:2� 0:4 keV; (10)

which is the weighted average for the results of the �!
�� width using the g��� coupling in (6) obtained when the
F0

0�t� amplitude in (3) is analytically continued to � pole
position t� on the first Riemann sheet (5) in two cases: first,
when using for cot���t�� in (1) the three-parameter fit
formula from Ref. [2] including both low-energy kaon
data and high-energy data and, second, when varying the
parameters of the fit for cot���t�� found in Ref. [2] in order
to mimic the pole position found in Ref. [1]. In both cases,
this F0

0�t� reproduces within 1.5 standard deviations the
experimental value of ��� ��t0 when inserted in the BEFT
sum rule (2).

To conclude, we have shown that the scalar-isoscalar
�� ! �� amplitude F0

0�t� may be fixed by using analy-
ticity, unitarity, and experimental information on the nu-
cleon electromagnetic polarizabilities. This is possible and
direct because this component is projected out in the sum
rule (2). When both F0

0�t� in (3) and T�t� in (1) are analyti-
cally continued to the complex plane, the � pole position
and its g���=g��� and g��� residues become fixed.
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