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We present rigorous upper and lower bounds for the zero-momentum gluon propagator D�0� of Yang-
Mills theories in terms of the average value of the gluon field. This allows us to perform a controlled
extrapolation of lattice data to infinite volume, showing that the infrared limit of the Landau-gauge gluon
propagator in SU�2� gauge theory is finite and nonzero in three and in four space-time dimensions. In the
two-dimensional case, we find D�0� � 0, in agreement with Maas. We suggest an explanation for these
results. We note that our discussion is general, although we apply our analysis only to pure gauge theory in
the Landau gauge. Simulations have been performed on the IBM supercomputer at the University of São
Paulo.
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Introduction.—Color confinement is a basic feature of
hadron physics that still lacks a clear theoretical under-
standing. Among several explanations suggested in the
literature (see [1] for a recent review), the so-called
Landau-gauge Gribov-Zwanziger scenario [2,3] relates
gluon confinement to the infrared (IR) suppression of the
gluon propagator D�p2�, whereas quark confinement is
related to the IR enhancement of the ghost propagator
G�p2�. This scenario is supported by several studies using
functional methods [4]. In particular, these studies [5–7]
predict, for small momenta, a gluon propagator D�p2� /

p2�aD�1� and a ghost propagator G�p2� / 1=p2�1�aG�. The
IR exponents aD and aG should satisfy the relation aD �
2aG � �4� d�=2, where d is the space-time dimension and
aG should have a value in the interval �1=2; 1�. Clearly, if
aD > 1, one has D�0� � 0, implying maximal violation of
reflection positivity [3]. In the four-dimensional case, one
finds [6,7] that aG � 0:59 and aD � 2aG. Similar power
behaviors have also been obtained for the various vertex
functions of SU�Nc� Yang-Mills theories [7,8]. As a con-
sequence, the running coupling constants from the ghost-
gluon, three-gluon, and four-gluon vertices are all finite at
zero momentum, displaying a universal (qualitative) be-
havior [4]. Let us note that a key ingredient of these results
is the nonrenormalization of the ghost-gluon vertex, i.e.,
~Z1�p

2� � 1, which has been verified at the nonperturbative
level [9] using lattice Monte Carlo simulations.

One should stress, however, that different IR behaviors
for the Landau gluon and ghost propagators have also been
proposed in the literature. For example, in Ref. [10], the
authors find that D�0� is finite and nonzero and that aG �
0, with a gluon propagator characterized by a dynamically
generated mass. Similar results are obtained in Ref. [11].
On the other hand, in Ref. [12], using Ward-Slavnov-
Taylor identities, the authors conclude that D�p2� should
be (probably very weakly) divergent at small momenta and
that aG � 0. Recently, Chernodub and Zakharov [13] ob-

tained the relation 2aD � aG � 1 for the 4D IR exponents
of gluon and ghost propagators, by considering the con-
tribution of these propagators to thermodynamic quantities
of the system, such as pressure and energy density. This
result, together with the previous relation between aD and
aG, implies that aD � 2=5 and aG � 1=5; i.e., the ghost
propagator blows up faster than p�2 at small momenta,
while the gluon propagator diverges as p�6=5. Very re-
cently, in Ref. [14], it was shown that by using the
Gribov-Zwanziger approach one can also obtain a finite
D�0� gluon propagator and aG � 0. Finally, phenomeno-
logical tests [15] seem to favor a finite and nonzero D�0�.

Numerical studies using Monte Carlo simulations sug-
gest that the gluon propagator is finite at zero momentum
[16–20] and that the ghost propagator [16,17,21] is en-
hanced when compared to the tree-level behavior p�2.
Moreover, in 2D and in 3D [16,20] the gluon propagator
D�p2� shows a maximum value for p of a few hundred
MeV and decreases as p goes to 0. On the other hand, in
4D, even using lattices with a lattice side of about 10 fm,
one does not see a gluon propagator decreasing at small
momenta [19]. It has been argued that an IR decreasing
gluon propagator can be obtained numerically only when
simulations are done on large enough lattice sizes [22].
However, from recent studies in 4D using very large lattice
volumes [23–25], one sees that D�p2� either displays a
plateau for momenta p & 100 MeV or gets slightly sup-
pressed at small momenta. Let us note that one of the main
problems of the numerical studies of the gluon propagator
is the lack of a simple way of extrapolating the data to
infinite volume.

Here we discuss the behavior of the gluon propagator at
zero momentum. We show that, instead of studying D�0�
directly, it is more convenient to consider the quantity

 M�0� �
1

d�N2
c � 1�

X
�;b

j ~Ab��0�j: (1)
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In a spin system, this would be equivalent to studying the
average absolute value of the components of the magneti-
zation instead of the susceptibility, which is, of course, a
much noisier quantity. (Note that, by symmetry, the field
components will average to zero if no absolute value is
taken.) In order to relate M�0� to D�0�, we derive rigorous
lower and upper bounds for D�0�, which are expressed in
terms ofM�0�. Numerical data are obtained from extensive
simulations in two, three, and four dimensions, for the pure
SU�2� case, using very large lattices in the scaling region.
We show that by using these bounds for D�0� and with
present lattice sizes we have clear control over the extrapo-
lation of the data to the infinite-volume limit. We suggest a
possible explanation of the results obtained. Finally, we
present our conclusions. We note that our discussion con-
cerning the bounds for the gluon propagator is general,
although we consider here only the Landau-gauge propa-
gator and pure SU�2� gauge theory. Note also that recent
studies [25,26] have verified the analytic prediction that
Landau-gauge gluon and ghost propagators in SU�2� and in
SU�3� are rather similar. Thus, we expect that the analysis
presented here should apply also to the SU�3� case.

Lower and upper bounds for D�0�.—As noted in the
introduction, interesting lower and upper bounds for the
gluon propagator at zero momentum D�0� can be obtained
by considering the quantityM�0� defined in Eq. (1), i.e., the
average of the absolute value of the components of the
gluon field at zero momentum. These components are
given by

 

~A b
��0� �

1

V

X
x

Ab��x�: (2)

In Ref. [3], it was shown that in the Landau and the
Coulomb gauge the quantity M�0� should go to zero at
least as fast as 1=N in the infinite-volume limit, where N is
the number of lattice points per direction. This result is
simply a consequence of the positivity of the Faddeev-
Popov matrix; i.e., it applies to gauge-fixed configurations
that belong to the interior of the first Gribov region.

In order to find the lower and upper bounds for D�0�, let
us consider the inequality

 

�
1

m

Xm
i�1

Xi

�
2
	

1

m

Xm
i�1

X2
i ; (3)

where ~X is a vector with m components Xi. This result
simply says that the square of the average of an observable
is smaller than or equal to the average of the square of this
quantity and is equivalent to the inequality

 

1

m

Xm
i�1

�Xi � �X�2 
 0; �X �
1

m

Xm
i�1

Xi: (4)

Note that expression (3) becomes an equality when Xi �
constant. We now apply (3) to the vector withm � d�N2

c �

1� components hj ~Ab��0�ji. This yields

 hM�0�i2 	
1

d�N2
c � 1�

X
�;b

hj ~Ab��0�ji2: (5)

Then we can apply the same inequality to the Monte Carlo
estimate of the average value hj ~Ab��0�ji � n�1P

cj ~A
b
�;c�0�j,

where n is the number of configurations. In this case, we
obtain

 hj ~Ab��0�ji2 	 hj ~A
b
��0�j

2i: (6)

Thus, by recalling that
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FIG. 1. The square of the quantity ahM�0�i and the quantity
a2d�N2

c � 1�hM�0�2i (both in GeV�2) as a function of the inverse
lattice side 1=L (GeV) for the 2D case (top), the 3D case
(center), and the 4D case (bottom). We also show the data for
a2D�0�=V (also in GeV�2) and the fit of the data using the
parameters reported in Table I. Note that with our notation M�0�,
D�0�, and V are dimensionless quantities, while L � aV1=d is
dimensionful.
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 D�0� �
V

d�N2
c � 1�

X
�;b

hj ~Ab��0�j
2i (7)

and using Eqs. (5) and (6), we find that

 VhM�0�i2 	 D�0�: (8)

At the same time we can write the inequality

 

�X
�;b

j ~Ab��0�j
2

�
	

��X
�;b

j ~Ab��0�j
�

2
�
: (9)

This implies that

 D�0� 	 Vd�N2
c � 1�hM�0�2i: (10)

Thus, if M�0� goes to zero as V��, we find that D�0� ! 0,
0<D�0�<�1, or D�0� ! �1, respectively, if the ex-
ponent � is larger than, equal to, or smaller than 1=2.
Finally, let us note that the inequalities (8) and (10) can
be immediately extended to the case D�p2�, with p � 0.

Results.—We have considered several lattice volumes in
2D (at � � 10, up to a lattice volume V � 3202), in 3D (at
� � 3, up to V � 3203,) and in 4D (at � � 2:2, up to V �
1284). Details of the simulations will be presented else-
where [27]. We set the lattice spacing a by considering the
input value �1=2 � 0:44 GeV, which is a typical value for
this quantity in the 4D SU�3� case. Note that the lattice
volumes 3202 at � � 10, 3203 at � � 3, and 1284 at � �
2:2 correspond, respectively, to a2V � �70 fm�2, a3V �
�85 fm�3, and a4V � �27 fm�4. Simulations in 2D have
been done on a PC cluster at the IFSC–USP (with
4 Pentium IV 2.8 GHz and 4 Pentium IV 3.0 GHz).
Simulations in 3D and in 4D have been done in the
4.5 Tflops IBM supercomputer at USP [28]. The total
CPU time was equivalent to about 5.7 (in 3D) and
25.9 days (in 4D) on the whole machine.

We start by considering the quantity hM�0�i. We find
(see Fig. 1 and Table I) that our data extrapolate very well
to zero as 1=Ll, with the values of l given in Table I. Thus,

in 3D and in 4D we have hM�0�i � 1=V1=2, implying that
D�0�> 0. In particular, from our fits we obtain a2D�0� 

�Bl=a

l�2. This gives a2D�0� 
 0:4�1� GeV�2 in 3D and
a2D�0� 
 2:2�3� GeV�2 in 4D, where we used a �
1:356 87 GeV�1 in 3D and a � 1:066 GeV�1 in 4D. As
for the upper bound (10), by using our fits (see again Fig. 1
and Table I) we have a2D�0� 	 d�N2

c � 1�Bu=au, yielding
a2D�0� 	 4�1� GeV�2 in 3D and a2D�0� 	 29�5� GeV�2

in 4D. On the other hand, in 2D both the lower and the
upper bounds extrapolate to zero, implying that D�0� � 0
in agreement with Ref. [16]. Let us note that our bounds in
3D and in 4D are in agreement with the data shown in
Figs. 1 and 2 of Ref. [23]. [In the 3D case, compared to the
extrapolation reported in Fig. 1 of Ref. [23], one should
also include here a factor � � 3:0, i.e., 1:2�3� 	 a2D�0� 	
12�3� GeV�2.] Also note that in the three cases one finds
Bu � B2

l and u � 2l. Indeed, one can check that
hM�0�i2 & hM�0�2i, implying that the quantity M�0� is al-
most the same for all Monte Carlo configurations. More
precisely, we verified for the three cases that hM�0�2i �
hM�0�i2 [i.e., the susceptibility of M�0�] goes to zero as
�1=V in the infinite-volume limit.

In order to interpret these results, let us first note that,
given a Gaussian random variable xwith a null mean value
and standard deviation �, the random variable jxj has a
mean value (and standard deviation) proportional to �. In
our case, this suggests that the average value of the gluon
field at zero momentum ~A�0� [defined in Eq. (2)] should be
zero with a standard deviation of the order of 1=Lc, with
c � l (see Table I). This is indeed the case in 2D, 3D, and
4D. [We find, respectively, c � 1:36�2�, 1.47(3), and
1.97(1) for the three cases.] In 3D and in 4D, our results
imply that � / 1=

����
V
p

. This property is known as self-
averaging [29] and is the behavior expected for extensive
quantities in pure phases, away from phase boundaries. (In
our case, the magnetization is not extensive, because we
divide by the volume, but the result holds for the relative
standard deviation.) More precisely, one talks of strong
self-averaging when � / 1=Lc and c � d=2 and of weak
self-averaging when c < d=2. Thus, we find strong self-
averaging forM�0� in 3D and in 4D and some kind of over-
self-averaging in 2D, with c > d=2. In simpler terms, the
gluon propagator may be thought of as the susceptibility
associated to the magnetization M�0� [or rather to the
quantity defined by Eq. (1) without the absolute value,
which has zero average]. In 3D and 4D the system has
(finite) nonzero susceptibility, while for 2D the suscepti-
bility is zero. We do not have a simple explanation for this
latter result. Here we can argue only that the 2D case is
probably different since there are no propagating degrees
of freedom.

Note that our results in 3D and in 4D imply only that
reflection positivity is not maximally violated. A clear
violation of reflection positivity [27,30] is still obtained
in 2D, 3D, and 4D for the SU�2� and SU�3� cases.

TABLE I. Fits of ahM�0�i, a2hM�0�2i, and a2D�0�=V, respec-
tively, using the Ansätze Bl=L

l, Bu=Lu, and B=Lk. Note that Bl,
Bu, and B have mass dimensions, respectively, �l� 1, �u� 2,
and �k� 2. Note also that, in order to obtain Fig. 1, one should
multiply by d�N2

c � 1� the data and the fit related to the fourth
and fifth columns of the table. Most of the data used for the fits
have a statistical error of the order of 2%–3%. For all fits we
have �2=d:o:f: � 1.

d Bl l Bu u B k

2 1.48(6) 1.367(8) 2.3(2) 2.72(1) 3.3(2) 2.73(1)
3 1.0(1) 1.48(3) 1.0(3) 2.95(5) 1.5(3) 2.96(4)
4 1.7(1) 1.99(2) 3.1(5) 3.99(4) 4.7(8) 3.99(4)
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Conclusions.—We have shown that the Landau-gauge
gluon propagator at zero momentum D�0� is finite and
nonzero in 3D and in 4D. At the same time, we find that
D�0� � 0 in 2D, in agreement with Ref. [16]. These results
have been obtained by considering the inequalities in
Eqs. (8) and (10), i.e., by studying the ‘‘magnetizationlike’’
quantity M�0� instead of the ‘‘susceptibility’’ D�0�. This
allows control of the extrapolation of the data to infinite
volume. Moreover, the quantity D�0�=V can be well fitted
in this limit as a function of 1=L. Our results in 3D and in
4D can be explained as a manifestation of strong self-
averaging. As mentioned above, a similar analysis may
be applied to more general cases and considering also
nonzero momenta.
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