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We propose a symmetric version of the multiscale entanglement renormalization ansatz in two spatial
dimensions (2D) and use this ansatz to find an unknown ground state of a 2D quantum system. Results in
the simple 2D quantum Ising model on the 8� 8 square lattice are found to be very accurate even with the
smallest nontrivial truncation parameter.
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Over the past decade, a rapid development of efficient
methods for simulation of strongly correlated quantum
systems took place, especially in one spatial dimension
(1D). It was initiated with the, by now classic, Letter of
White on the density matrix renormalization group
(DMRG) algorithm [1]. Recently, the subject received
new acceleration with the Letter of Vidal [2], who pro-
posed an elegant version of the algorithm based on the idea
that a state of a 1D quantum spin chain can be written as a
Schmidt decomposition between any two parts of the
chain. For a generic ground state, but not at a quantum
critical point, the coefficients of this Schmidt decomposi-
tion decay exponentially, and the decomposition can be
truncated to a finite number of terms d with an exponen-
tially small loss of accuracy. The DMRG algorithms are
equivalent to a matrix product state ansatz [3] for the
ground state where each spin S is assigned 2S� 1 matrices
of size d� d. Each matrix has two indices to be contracted
with its two nearest neighbors in 1D. The matrix product
state can be naturally generalized to two and more dimen-
sions by replacing the matrices with higher rank tensors to
accommodate more nearest neighbors [4]. These ‘‘tensor
product states’’ [5] can also be obtained as projected en-
tangled pair states (PEPSs) [4], the latter being a more
convenient representation to prove that any quantum state
can be represented accurately by a PEPS for a sufficiently
large d. In 2D, unlike in 1D, exact calculation of expecta-
tion values in a PEPS is exponentially hard with increasing
lattice size, but this problem can be overcome, at least for
open boundary conditions, by an efficient approximate
method [6] which is linear in the system size.

The ability to make efficient and accurate zero tempera-
ture simulations in 2D is of fundamental importance for
our understanding of strongly correlated 2D quantum sys-
tems. It is enough to mention possible applications to
high-Tc superconductors which effectively are 2D systems
of strongly correlated electrons on a lattice. Their, by now
classic, Hubbard model [7] has not been solved exactly
despite staying in the focus of intensive research activity
for several decades.

In the context of matrix product states and their general-
izations, the main difficulty is that all calculations are
polynomial in the truncation d, but in 2D the degree of

the polynomial is too high to go far beyond d � 2 or 3,
which, however, may be not accurate enough. A possible
solution to this problem is the multiscale entanglement
renormalization ansatz (MERA) proposed in Ref. [8],
where proper ‘‘renormalization’’ of entanglement is shown
to reduce the necessary d by orders of magnitude. This
economy of the truncation parameter d was demonstrated
to be truly impressive in the 1D quantum Ising model,
where, even at the critical point, a MERA with a modest
d � 8 is as accurate as a matrix product state with d in the
range of a few hundreds [8]. Simulations with a 1D MERA
are very efficient because they are polynomial in a rela-
tively small d [8,9].

The 1D MERA is motivated by the following real space
renormalization group algorithm. Spins on a 1D lattice can
be grouped into a lattice of blocks of two nearest neighbor
spins. There are two possible choices of block chains A and
B shifted with respect to each other by one lattice site. In a
decimation step of the renormalization group, each A block
is replaced by one effective block spin whose Hilbert space
is truncated to its d most important states. The most
important states are the eigenstates of an A block’s reduced
density matrix with the highest eigenvalues. However, to
keep d as small as possible but without losing much accu-
racy before every decimation, all pairs of nearest neighbor
A blocks are partly disentangled by 2-spin unitary trans-
formations (disentanglers) acting on the 2-spin B blocks.
The disentanglers are optimized to minimize the entropy of
entanglement of each A block with the rest of the lattice.
They remove entanglement between those pairs of nearest
neighbor spins which belong to different A blocks before
the A blocks are decimated. The same basic decimation
step, including disentanglers, is then applied iteratively to
the resulting decimated lattices of block spins. It is worth
mentioning that a similar renormalization group was pro-
posed earlier in Ref. [10] but without the disentanglers
which are essential to keep d reasonably small.

This renormalization group algorithm motivates the
MERA. The simplest nontrivial example of a 1D MERA
is the ansatz for a periodic lattice of N � 4 spins:

 Ti1i2W
i1
j1j2
Wi2
j3j4
Uj2j3
k2k3

Uj4j1
k4k1
jk1k2k3k4i: (1)

Its graphical representation is shown in Fig. 1(a). The
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repeated indices in Eq. (1) imply summation. The lowest
layer of indices k number basis states of the 4 spins. Here
the A blocks are the pairs of spins �1; 2� and �3; 4�, and the
B blocks are the pairs �2; 3� and �4; 1�. The U’s are the
disentanglers; they are unitary matrices satisfying unitarity
conditions UUy � 1 and UyU � 1, or Uj1j2

k1k2
�Uj3j4

k1k2
�� �

�j1j3
�j2j4

and Uj1j2
k1k2
�Uj1j2

k3k4
�� � �k1k3

�k2k4
. The second layer

of indices j numbers basis states of disentangled spins
defined by, e.g., jjj2; j3ii � Uj2j3

k2k3
jk2; k3i. The W’s are

isometries or projectors which satisfy orthonormality rela-
tions Wi1

j1j2
�Wi2

j1j2
�� � �i1i2 . Their job is to truncate the

Hilbert space of the disentangled A block spins to the d
most important states numbered by the upper indices i 2
f1; . . . ; dg: For any fixed upper index i, the matrix Wi

j1j2
is

the ith eigenstate of the A block reduced density matrix in
the basis of states of disentangled spins jjj1; j2ii. The
eigenstates numbered by indices i become basis states
jjji1iii � Wi1

j1j2
jjj1; j2ii of the effective block spin.

Finally, the top tensor Ti1i2 , which is normalized as
Ti1i2�Ti1i2�

� � 1, is a quantum state in the basis jjji1; i2iii
of the effective block spins.

In of Fig. 1(b), we show a generalization of the 4-spin
ansatz in Fig. 1(a) to a periodic lattice of N � 8 spins. The
8 spins require one more layer of isometries and disen-
tanglers. In general, a lattice ofN � 2n spins requires �n�
1� layers of isometries and disentanglers so the number of
tensors that need to be stored in memory is only logarith-
mic in N.

In Ref. [8] MERA was generalized further to 2D, and in
Ref. [11] it was put in a more general unifying framework.
In this Letter, we propose the alternative 2D ansatz in
Fig. 2. In this symmetric ansatz, 2� 2 square plaquettes
are replaced by effective block spins in each decimation
step. The symmetric ansatz is disentangling in a systematic
way all those pairs of nearest neighbor (NN) spins which
belong to different 2� 2-spin decimation blocks; see
Fig. 3, where the spins on a 2D square lattice are grouped
into blue and red plaquettes. We propose that in each
decimation step each blue plaquette is replaced by an
effective block spin whose Hilbert space is truncated to
its dmost important states, but before each decimation, the
blue plaquettes are partly disentangled by 4-spin unitary
disentanglers acting on the red plaquettes. They remove
entanglement between all those pairs of NN spins which
belong to different blue decimation blocks. Indeed, note
that, in Fig. 3, all links joining such pairs of spins are
painted red. These red links are naturally grouped into
red plaquettes, and the proposed 4-spin disentanglers re-
move all of the unwanted ‘‘red’’ NN entanglement before
the following decimation. It is essential here that the red
plaquettes are disjoint, because thanks to this all of the
unwanted red entanglement can be removed by the small 4-
spin disentanglers acting on individual red plaquettes.
Other decimation schemes either do not remove all of the
unwanted NN entanglement between different decimation
blocks, or they would require disentanglers acting on more
than 4 spins.

The symmetric variant of the renormalization group
motivates the MERA shown in Fig. 2 in the case of a 4�
4 periodic lattice. This graph represents the quantum
state
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FIG. 1 (color online). In (a) the 1D MERA in Eq. (1) on a 4-
site periodic lattice of spins. In (b) the 1D MERA is generalized
to a periodic lattice of 8 spins.
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FIG. 2 (color online). The symmetric 2D MERA on a periodic
4� 4 lattice. The isometries W replace 4-spin square plaquettes
with one effective block spin in just one decimation step.
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Here the double subscript indices numerate rows and col-
umns of the lattice. A generalization to greater 2n � 2n

lattices is obtained by adding �n� 2� layers of isometries
and disentanglers.

In this Letter, we use MERA to find the ground state of
the spin- 1

2 transverse quantum Ising model

 H � �g
X
i

Xi �
X
hi;ji

ZiZj (3)

on 2� 2, 4� 4, and 8� 8 periodic square lattices. Here X
and Z are Pauli matrices. T and all layers of different W
and U were optimized to minimize total energy. Provided
that the minimization preserves all constraints on T, W,
and U (respectively: normalization, orthonormality, and
unitarity), there is no need to obtain Wi’s as leading
eigenstates of reduced density matrices and to construct
U’s as disentanglers that minimize the entropy of those
matrices. The W’s and U’s that minimize the energy are at
the same time good candidates for, respectively, the lead-
ing eigenstates and optimal disentanglers.

In most calculations, we used d � 2 in all tensors, i.e.,
the minimal nontrivial value of the truncation parameter,
except for the 8� 8 lattice, where it was necessary to
increase the parameter to d � 3 but only in the top tensor
T near the critical g � 3:04. For any g, the initial state for
the minimization was the Schrödinger cat state j""" . . .i �
j### . . .i, which is the ground state when g! 0. This state
translates into trivial disentanglersU � 1, the top T having
only two nonzero elements T1111 � T2222 � 1=

���
2
p

, and all
W’s being nonzero only when W1

1111 � W2
2222 � 1. As we

were looking for the ground state, we assumed that all
tensors T, W, and U are real. The tensor T and each tensor
Wi are quantum states on a 2� 2 square plaquette. Each
tensor T or Wi has four lower indices with each index
numbering d states of its corresponding spin. We assume
that T is symmetric under all exchanges of lower indices

that correspond to symmetry transformations of the 2� 2
plaquette. As each Wi is an eigenstate of a reduced density
matrix, it must be either symmetric or antisymmetric under
each of these symmetry transformations. In all considered
cases, we found that the lowest energy is obtained when all
Wi’s are assumed symmetric under all transformations. In
this symmetric subspace, it is convenient to parametrize
the tensors as (here d � 2)

 Tabcd ’
X6

��1

t�v�abcd; Wi
abcd ’

X6

��1

wi�v�abcd;

U � exp
�
i
X21

��1

q�A�

�
;

(4)

where ’means equality up to normalization. Here v�abcd �
habcdjv�i, where the states

 jv1i � j0000i; jv2i � j1111i;

jv3i � �j0110i � j1001i�=
���
2
p
;

jv4i � �j1000i � j0100i � j0010i � j0001i�=2;

jv5i � �j0111i � j1011i � j1101i � j1110i�=2;

jv6i � �j1100i � j0011i � j0101i � j1010i�=2

(5)

are a basis of symmetric states on the 2� 2 plaquette. A�’s
are imaginary 4-spin Hermitian operators invariant under
the symmetries of the 2� 2 plaquette:
 

A1 ’ Y1 � Y2 � Y3 � Y4;

A2 ’ X1Y2 � Y1X2 � X2Y4 � Y2X4 � X3Y4

� Y3X4 � X3Y1 � Y3X1; . . . ;

A21 ’ Y1Y2Y4 � Y2Y4Y3 � Y4Y3Y1 � Y3Y1Y2:

(6)

Each A� is a symmetrized sum of tensor products of Pauli
matrices with each term in the sum including an odd
number of Y ’s. They are normalized so that TrAy�A� �
���.

The minimized energy is a sum of all bond energies
Ei;j � h�

1
4gXi �

1
4gXj � ZiZji. However, thanks to the

assumed symmetry of the tensors, only some of them
need to be calculated. For example, on the 4� 4 lattice
in Fig. 3, one needs to evaluate only two bond energies:
E11;12 and E12;13. By symmetry, all other bond energies are
equal to either E11;12 or E12;13, and the total energy is
hHi � 16E11;12 � 16E12;13. In a similar way, the 8� 8
square lattice has 6 and, in general, anN � N square lattice
has N

2

16 �
N
4 independent bond energies. The total number of

bonds is 2N2, so for a large N we save a factor of 32 simply
by using the assumed tensor symmetries. Thus, for a large
N, the cost of calculating energy is proportional to the
lattice size times the cost of calculating any bond energy
Ei;j which is logarithmic in N and polynomial in d. Here
the proof follows similar lines as in Ref. [8]. Indices are
contracted along causal cones whose horizontal cross sec-

E11,12 E12,13

FIG. 3 (color online). The symmetric decimation in 2D: Each
blue 4-spin square plaquette is replaced by a block spin whose
Hilbert space is truncated to its d most important states, but
before this decimation a unitary 4-spin disentangler is applied to
each red plaquette. The disentanglers remove unwanted entan-
glement between all those (red) nearest neighbor pairs of spins
which belong to different (blue) decimation blocks.
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tion is 3� 3 (or 4� 4) spins when cut above (or below) a
layer of isometries W. To avoid the intermediate 4� 4
stage, we do not apply all isometries first and then all
disentanglers, but we apply some isometries earlier than
others, gradually including disentanglers; i.e., we pass
through a series of intermediate nonhorizontal cross sec-
tions never exceeding 11 spins.

Energy was minimized with respect to the variational
parameters ft�; wi�; q�g in Eq. (4) using different standard
minimization routines, but the best performance was
achieved with the simplest steepest descent method with
gradients of the energy estimated from finite differences.
Our calculations demonstrate that the energy of MERA can
be minimized in a fairly straightforward manner.

In Fig. 4, we summarize our results for 2� 2, 4� 4, and
8� 8 periodic square lattices. Of special interest are
Figs. 4(a) and 4(d), where we compare transversal magne-
tization obtained from MERAwith exact results on the 4�
4 lattice and perturbative results on the 8� 8 lattice. On
the 4� 4 lattice, d � 2 was accurate enough, but on the
8� 8 lattice, d in the top tensor had to be increased to d �
3. This was necessary because with increasing lattice size
the Ising model develops a critical point at g � 3:04—this
tendency can be seen in Figs. 4(b) and 4(c).

In conclusion, we proposed and tested a symmetric
version of MERA in 2D. By using the smallest nontrivial
truncation parameter d � 2 in most tensors and fairly
straightforward optimization methods, we obtained sur-
prisingly accurate numerical results for the ground state
of the 2D quantum Ising model. This is, we think, an
encouraging result, but, as the Ising model that we consider
is relatively simple, it remains to be seen how well MERA
can deal with more complicated models.

We are indebted to Bogdan Damski and Anders Sandvik
for providing us with exact results. Discussions with
Bogdan Damski, Maciek Lewenstein, and Kuba

Zakrzewski are appreciated. This work was supported in
part by Polish government scientific funds (2005–2008) as
a research project and in part by Marie Curie ATK project
COCOS (Contract No. MTKD-CT-2004-517186).

Note added.—When this Letter was in the final stage of
preparation, the e-print [13] appeared, where a similar
symmetric ansatz was proposed.
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[3] S. Rommer and S. Östlund, Phys. Rev. B 55, 2164 (1997);

M.-C. Chung and I. Peschel, Phys. Rev. B 62, 4191 (2000).
[4] F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066; F.

Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac,
Phys. Rev. Lett. 96, 220601 (2006); V. Murg, F. Verstraete,
and J. I. Cirac, Phys. Rev. A 75, 033605 (2007); N.
Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys.
Rev. Lett. 98, 140506 (2007); 100, 040501 (2008).

[5] T. Nishino, K. Okunishi, Y. Hieida, N. Maeshima, and Y.
Akutsu, Nucl. Phys. B575, 504 (2000).

[6] J. Jordan, R. Orus, G. Vidal, F. Verstraete, and J. I. Cirac,
arXiv:cond-mat/0703788; A. Isacsson and O. F. Syljuasen,
Phys. Rev. E 74, 026701 (2006).

[7] J. Hubbard, Proc. R. Soc. A 276, 238 (1963); 281, 401
(1964).

[8] G. Vidal, Phys. Rev. Lett. 99, 220405 (2007);
arXiv:0707.1454.

[9] M. Rizzi, S. Montangero, and G. Vidal, Phys. Rev. A 77,
052328 (2008).

[10] C. J. Morningstar and M. Weinstein, Phys. Rev. D 54,
4131 (1996).

[11] C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev.
Lett. 100, 130501 (2008).

[12] A. W. Sandvik, Phys. Rev. E 68, 056701 (2003).
[13] G. Evenbly and G. Vidal, arXiv:0710.0692.

1 2 3 4 5
g

0

0.2

0.4

0.6

0.8

1

〈 Z
 i Z

 j〉  
fo

r 
N

.N
. i

,j

8x8 d=2(top: 3)
2x2 d=2
4x4 d=2

0 1 2 3 4 5
g

0

0.2

0.4

0.6

0.8

1

〈X
 i〉

4x4 exact  
4x4 d=2 

g
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

〈 X
 i〉

8x8  d=2 (top: 3)
2x2  d=2
4x4  d=2

2 2.5 3 3.5 4
g

0.5

0.6

0.7

0.8

0.9

〈 X
 i 

〉
8x8 d=2
8x8 perturbative
8x8 d=2 (top: 3)

ba

dc

FIG. 4 (color online). In (a), we com-
pare transversal magnetization hXi on the
4� 4 lattice obtained from MERA and
exact diagonalization. In (b) and (c), the
transversal magnetization and nearest
neighbor ferromagnetic correlator ob-
tained from MERA are shown for differ-
ent lattice sizes. In (d), we compare
transversal magnetization on the 8� 8
lattice when d � 2 in all tensors and
when it is increased to d � 3 in the top
tensor with the perturbative results from
Ref. [12].

PRL 100, 240603 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JUNE 2008

240603-4


