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The exact formula of the one-level distribution of the Schmidt eigenvalues is obtained for dynamical
formation of entanglement in quantum chaos. The formula is based on the random matrix theory of the
fixed-trace ensemble, and is derived using the theory of the holonomic system of differential equations.
We confirm that the formula describes the universality of the distribution of the Schmidt eigenvalues in
quantum chaos.
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Quantum entanglement plays a key role in various as-
pects of quantum mechanics. Nonseparability in entangled
states is a specific feature of quantum mechanics [1–3].
Entanglement is also an indispensable resource in quantum
computation and quantum communication [4]. In statisti-
cal mechanics of quantum systems, entanglement of a
system with its surrounding environment is supposed to
be the origin of irreversibility and decoherence [5,6]. In
particular, dynamical formation of entanglement by quan-
tum chaos plays an important role for the origin of statis-
tical mechanics [7,8]. Thus, it has been an active research
area these days [9,10].

Given a quantum state of a two-particle system j�i, we
can express it by the Schmidt decomposition j�i �PN
i�1 dijii1 � jii2; where di �i � 1; . . . ; N� are non-

negative real and satisfy the normalization conditionPN
i�1 d

2
i � 1, and are called the Schmidt eigenvalues.

Here, we assume for simplicity that the Hilbert spaces of
the two subsystems are of equal dimension N. It is known
that the entropy S � �

PN
i�1 d

2
i logd2

i characterizes the
degree of entanglement, and that the Schmidt number K �
1=
PN
i�1 d

4
i represents the number of effective degrees of

freedom which contribute to entanglement. They play an
important role in quantum optics and quantum cryptogra-
phy [11,12]. The study of the Schmidt eigenvalues is
crucial for understanding and utilizing entanglement.

Recently, we have found universality for the statistical
properties of the Schmidt eigenvalues in dynamical entan-
glement involving quantum chaos [13]; the distribution of
the low-lying Schmidt eigenvalues near zero (the hard
edge) is described well by the random matrix theory [14]
of the Laguerre unitary ensemble [15,16]. However, we
also have found serious deviation from the ensemble for
those eigenvalues near the largest one (the soft edge). This
is because the Laguerre ensemble breaks the normalization

condition. Thus, the question remains if universality exists
over the whole range of the Schmidt eigenvalues. In par-
ticular, it is crucial to investigate how the larger Schmidt
eigenvalues are distributed, since they dominate the statis-
tical properties of entanglement.

In this Letter, we analytically derive the exact expression
of the one-level distribution of the Schmidt eigenvalues for
the fixed-trace ensemble [17] using the theory of the holo-
nomic system of differential equations [18]. We find that
the expression well describes the one-level distribution of
the Schmidt eigenvalues over the whole range for a
coupled quantum system exhibiting chaos. This confirms
the existence of universality for the distribution of the
Schmidt eigenvalues in quantum chaos.

First, we construct a random matrix theory for an arbi-
trary square complex matrix W. Suppose we impose the
following two conditions (i) and (ii) for the probabil-
ity distribution P�fWijg� of its matrix elements Wij:
(i) Wij are independent random variables, i.e., P�fWijg� �Q
ijPij�Wij�, and (ii) P�fWijg� is invariant under the local

unitary transformations, i.e., P�fWijg� � P�fW0ijg� for
W0 � UWV�1, where U and V are arbitrary unitary ma-
trices. Note that the condition (i) is not consistent with the
normalization condition

PN
i;j�1 jWijj

2 � 1. Then the
probability of the Schmidt eigenvalues di of the random
matrix W is shown to be represented by the distribution for
the Laguerre unitary ensemble

 P�L��f"ig� � C
Y

1�i<j�N

�"i � "j�2e
�
P
i

"i
; (1)

where the new variables "i � N2d2
i take the values from

0 to 1, and C is a constant [13]. The one-level distribu-
tion for the Laguerre ensemble is obtained by inte-
grating Eq. (1) with respect to the (N � 1) variables,
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"i�i � 2; . . . ; N�, as follows

 P�L�1;N�"� � e�"
XN�1

k�0

Lk�"�
2=N; (2)

where Lk�"� is the kth Laguerre polynomial [16].
However, in order to consider the Schmidt eigenvalues

di for a wave function represented by a random matrix W,
we need to impose the normalization condition

PN
i�1 d

2
i �

1. Then, we are led to the probability distribution for the
fixed-trace ensemble

 P�F��x1; . . . ; xN� � C0�
�
1�

XN
i�1

xi

�
P�L��f"ig�j"i�N2xi ; (3)

where xi � d2
i , and C0 is constant, and the delta function

represents the normalization condition. For the fixed-trace

ensemble, the one-level distribution is

 P�F�1;N�x� �
Z
� � �

Z
	0;1
N�1

dx2 . . . dxNP�F��x; x2; . . . ; xN�:

(4)

We can reduce Eq. (4) to a simple analytical formula [19]

 P�F�1;N�x� � �N
2 � 1��1� x�N�N�2�QN�x�; (5)

where Qn�x� is a polynomial of 2n� 2 degree,

 Qn�x� �
X2n�2

j�0

�2� n2�j

�2�j
A�n� 1; j�xj�1� x�2n�2�j: (6)

Here, �a�j � a�a� 1� . . . �a� j� 1�, and for an integer k

 A�n; 2k� �
��n�2k
�12�kk! 3F2��k;�k� 1=2; n� 2; n� 1� 2k; 1; 1� �0 � 2k � n� (7)

 

�
�2k� 1�!

�n� 1�	�2k� n�!
2�n� k�!�12�n�k

� 3F2��n� k;�n� k� 1=2; 2k� 2; 2k� n� 1; 2k� n� 1; 1� �n � 2k � 2n�; (8)

 A�n;2k�1���
2��n�2k�1

�32�kk! 3F2��k;�k�1=2;n�2;n�2k;1;1� �0� 2k�1�n� (9)

 

�
2�2k� 2�!

�n� 1�	�2k� 1� n�!
2�n� k� 1�!�32�n�k�1

� 3F2��n� k� 1;�n� k� 1=2;2k� 3; 2k� n� 2;2k� n� 2; 1� �n� 2k� 1� 2n�; (10)

where 3F2 is a generalized hypergeometric function.
Here, we explain briefly how Eqs. (5)–(10) are obtained;

for full details see the forthcoming paper [19]. We utilize
the result obtained recently by Kaneko [18]. He extended
the famous Selberg integral [16] by inserting further a
hypergeometric type weight factor in the integrand and
developed a theory of the holonomic system of differential
equations to evaluate analytically the extended integral. In
the case of our interest, the Selberg-Kaneko integral is
expressed in terms of the Appell’s hypergeometric func-
tion. By the confluence of a singular point in the original
Selberg-Kaneko integral, we introduce the confluent
Selberg-Kaneko integral. Then, we further apply the
Fourier transformation to it to obtain the simplex type
Selberg-Kaneko integral. Equation (4) is expressed in
terms of this simplex type Selberg-Kaneko integral. The
calculation requires the evaluation of nested hypergeomet-
ric series and is lengthy.

Next, we study the dynamical evolution of a system
composed of two kicked tops [14,20]. The kicked top is a
typical model where (i) the phase space volume is finite
and (ii) the classical dynamics changes from regular to
chaos as we vary the parameter. We numerically estimate
the one-level distribution of the Schmidt eigenvalues for

the system, and compare it with the analytical expression
Eq. (5). The Hamiltonian of the system is

 HT � H1 �H2 �H12; (11)

where Hi �i � 1; 2� are the Hamiltonians of the kicked
tops, and H12 is the interaction Hamiltonian

 Hi �
�
2
Jyi �

ki
2ji

J2
zi

X1
n�1

��t� n� �i � 1; 2�; (12)

 H12 �
c���������
j1j2

p Jz1
Jz2

X1
n�1

��t� n�; (13)

respectively. The parameters ki �i � 1; 2� and c are the
strengths of the kicks and the interaction, respectively.
Here Jxi , Jyi , and Jzi are the components of the angular
momenta of the tops, and ji�i � 1; 2� are the quantum
numbers of the angular momenta. In this Letter we set
j � j1 � j2 � 9; i.e., the dimension N is 2j� 1 � 19. As
the value of ki increases, the classical dynamics of the
single top changes as follows : while the phase space is
not fully chaotic and tori remain for ki & 3, almost all
classical trajectories are chaotic for ki * 6. In our study,
we will vary ki to see how the statistical properties of
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entanglement emerge, and choose c � 0:35 so that the
phase space structure of the single kicked top is reflected
in the coupled system.

In our quantum calculations, the initial states are taken
to be the products of two spin-coherent states [21] A and B
located at ��a;�a� � �0:89; 0:63� and ��b;�b� �
�2:25; 0:63�, respectively. The spin-coherent states reflect
classical-quantum correspondence. For the classical single
kicked top, while (�a, �a) is located within the chaotic sea
for ki * 2:5, (�b, �b) is in a torus for ki & 3 and in the
chaotic sea for ki * 6. Thus, the dependence on the initial
states also reveals how the difference of dynamics is re-
flected in entanglement. In the following, we abbreviate
these four choices as AA, AB, BA, and BB, respectively.
For each of the initial states, we calculate the time evolu-
tion of the wave function, and construct an ensemble of 105

wave functions over an interval from t � 104 to t � 1:1�
105. From the ensembles of the wave functions, we evalu-
ate the one-level distribution of the Schmidt eigenvalues.
In Figs. 1–3, we show the distributions for �k1; k2� �
�7:0; 6:5�, (7.0, 2.5), and (3.0, 2.5), respectively.
Correspondence between the classical and quantum initial
conditions is summarized in Table I. In Figs. 1–3, we also
plot P�F�1;N and P�L�1;N for comparison.

In Fig. 1, both of the tops are fully chaotic. For all the
initial states, the centers are located in the classical chaotic
sea. The distributions exhibit almost identical forms irre-
spective of the different initial conditions. Moreover, they
agree well with P�F�1;N given by Eq. (5) in the soft edge as
well as the hard edge and the bulk region. Thus, the
dynamically produced entanglement for the coupled sys-
tem of fully chaotic tops has universality described by the
random matrix theory of the fixed-trace ensemble. Note the
difference between P�F�1;N and P�L�1;N . The peaks of P�F�1;N are

more pronounced compared to those of P�L�1;N , although both

P�F�1;N and P�L�1;N show an oscillatory behavior and the loca-
tions of their peaks are very near. This means that the level-
repulsion in the fixed-trace ensemble is more enhanced
than that in the Laguerre ensemble.

In Fig. 2, one of the tops is fully chaotic but the other not.
All of the distributions deviate from that of the fixed-trace
ensemble. For the initial states AA and BA, however, the
distributions show similar forms and their deviations are

smaller. Note that these initial states are the products of the
states located in the chaotic sea. In Fig. 3, neither of the
tops is fully chaotic. The dependence on the initial states
becomes larger; while the distribution for AA is relatively
similar to P�F�1;N , that for BB does not even show the oscil-
latory behavior. Note that the distributions for AB and BA
have similar forms. This similarity is understandable be-
cause both of them are the products of one state in the
chaotic sea and the other in the torus, and the kicks of the
coupled tops have similar strengths. Thus, the degree of the
deviations reflects the features of the classical dynamics.

In this Letter, we have obtained the analytic form Eq. (5)
of the one-level distribution of the Schmidt eigenvalues for
the fixed-trace ensemble. The derivation utilizes the theory

FIG. 1 (color online). The distributions of the Schmidt eigen-
values for the coupled kicked tops. The parameters are j � 9,
k1 � 7:0, k2 � 6:5, and c � 0:35; i.e., both of the tops are fully
chaotic. The four initial conditions are AA, AB, BA, or BB. For
comparison, the distributions for the fixed-trace ensemble P�F�1;N

and the Laguerre ensemble P�L�1;N are shown, respectively. The
vertical axis is logarithmic and that in the inset is linear.

FIG. 2 (color online). The distributions of the Schmidt eigen-
values for the coupled kicked tops. Here, we set k1 � 7:0, k2 �
2:5; i.e., the first top is fully chaotic and the second is not. The
rest of the parameters are the same as in Fig. 1.

TABLE I. The features of the classical trajectories starting
from the initial conditions, ��a; �a� � �0:89; 0:63� and
��b; �b� � �2:25; 0:63�. The characters c and t stand for chaos
and torus, respectively. The centers of the quantum initial states,
A and B, are located there.

k1 k2 AA AB BA BB

Figure 1 7.0 6.5 cc cc cc cc
Figure 2 7.0 2.5 cc ct cc ct
Figure 3 3.0 2.5 cc ct tc tt
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of the holonomic system of differential equations devel-
oped in [18]. We have found that Eq. (5) agrees with the
distribution of the Schmidt eigenvalues for a quantum
system over the whole range when the system involves
fully chaotic dynamics. It indicates that the fixed-trace
ensemble describes the statistical properties of entangle-
ment for quantum chaotic systems, thereby leading us to
conclude that the statistical properties are universal [22].

The existence of the universality means that states of
quantum chaos attain ‘‘equilibrium,’’ which is insensitive
to the details of coupled systems. In other words, the
statistical properties of entanglement exhibit the same
features as far as chaos is strong enough. Moreover, we
suggest that the statistical properties of entanglement in
equilibrium does not depend on how the total system is
divided into two subsystems. Thus, we expect that these
features of equilibrium are the origin of decoherence.

We will extend our analysis to the case when the dimen-
sions of subsystems differ significantly [19]. Then, the
asymptotic analysis will reveal the behavior of systems
in heat bath. We will also study analytic forms of correla-
tions of the Schmidt eigenvalues. They will be of impor-
tance not only in equilibrium but also in relaxation toward
equilibrium. These studies are in progress and will be
published elsewhere.
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Note added.—We have succeeded in reducing the poly-
nomial Qn�x� given by Eqs. (6)–(10) to a simpler form.
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