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Highly polarized mixtures of atomic Fermi gases constitute a novel Fermi liquid. We demonstrate how
information on thermodynamic properties may be used to calculate quasiparticle scattering amplitudes
even when the interaction is resonant and apply the results to evaluate the damping of the spin dipole
mode. We estimate that under current experimental conditions the mode would be intermediate between
the hydrodynamic and collisionless limits.
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Recent experiments with polarized atomic Fermi gases
have made possible the realization of novel quantum sys-
tems [1]. The case we shall focus on here is that of a highly
polarized mixture of two fermion species. Because the
system remains normal at the lowest temperatures attained,
it is a completely new normal Fermi liquid. Since the
interaction may be tuned by exploiting Feshbach reso-
nances, it is possible to investigate the effects of strong
correlations in a previously inaccessible regime [2]. The
system is particularly rich because of the ability to vary the
relative numbers of the two sorts of atom and the ratio of
the atomic masses, in addition to the strength of the inter-
action and the temperature. In this Letter we calculate how
the resonant interaction affects the frequency and damping
of dipole modes in which the two components move rela-
tive to each other. A key element in the calculation is the
use of thermodynamic arguments to deduce quasiparticle
scattering amplitudes when the gas is strongly interacting.
Dipole modes have previously been studied for two differ-
ent spin states of 40K at higher temperatures in a regime in
which the gas is sufficiently dilute that the scattering am-
plitude is simply related to the scattering length [3]. Re-
lated issues have been investigated in the context of spin-
drag phenomena in low-dimensional Fermi systems [4,5].

We consider a homogeneous gas of two species of
fermion, which may be either two different hyperfine states
of the same atom or two different atoms, e.g., 6Li and 40K.
We denote the species by the label � �" , # , the numbers
of atoms by N" and N#, and their masses by m" and m#. The
interaction between an up atom and a down atom is char-
acterized by the s-wave scattering length a. Interactions
between like atoms may be neglected because the s-wave
component vanishes due to the Pauli principle. In the case
of large polarization or population imbalance, N" � N#,
the majority (up) component is essentially an ideal Fermi
gas with an effective mass m�" equal to the bare mass m"
even in the unitarity limit where jaj ! 1. By contrast, the
minority (down) component is strongly affected by the
interaction with the up atoms. The ground state energy of
a single down atom in a sea of up atoms can be written as

 �# � ���F"; (1)

�F" � �6�2n"�2=3=2m" being the Fermi energy of the spin-
up component and n� the density of the � atoms (we use
@ � 1). The parameter � depends on the mass ratio m#=m"
and on the variable kF"a, where kF" is the Fermi momentum
of the up atoms. For equal masses, Monte Carlo calcula-
tions in the unitarity limit give � � 0:6 [6–8], and for
other mass ratios � has been evaluated in the ladder
approximation [9], which, for equal masses, gives good
agreement with the Monte Carlo results. It is found that �
is a decreasing function ofm#=m". The effective massm�# of
a down atom is different from the bare mass and, for m# �
m", Monte Carlo calculations in the unitarity limit give
m�# � m# [6]. Furthermore, the ladder-approximation cal-
culations show that for large jaj the single-particle propa-
gator of the minority component has a large quasiparticle
peak [10].

The damping of counterflow is determined by the rate at
which momentum is transferred between the two compo-
nents. Consider a situation in which the two components
are spatially uniform. We use concepts of Fermi liquid
theory to describe the effects of the interactions. The
system is considered as an ideal gas of majority (up) atoms
mixed with a gas of minority (down) atoms whose elemen-
tary excitations are quasiparticles with effective mass m�# .
We take the minority component to have a mean velocity v
with respect to the majority component giving a total
momentum per unit volume P# � n#m�# v.

We define a momentum relaxation time �P by the rela-
tion

 

dP#
dt
� �

P#
�P
; (2)

and we shall calculate �P by assuming that both compo-
nents are in thermal equilibrium described by the distribu-
tion functions np0" � f����p0" ��"�	 and np# � f����p#�

p 
 v��#�	 with � � 1=kT and f�x� � 1=�ex � 1�. The
single-particle energies are �p0" � p02=2m" and �p# �

p2=2m�# . The term p 
 v boosts the down-atom distribution
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function by a velocity v. The rate of change of the mo-
mentum of the down atoms due to their collisions with up
atoms may then be written as
 

dP#
dt
� �2�

jUj2

V3

X
p;p0;q

p�np#np0"�1� np�q#��1� np0�q"�

� np�q#np0�q"�1� np#��1� np0"�	

� ���p# � �p0" � �p�q# � �p0�q"�; (3)

where V is the volume of the system. The two terms in (3)
correspond to a pair of quasiparticles with momenta p and
p0 scattering to a pair with momenta p� q and p0 � q and
the inverse process.

The effective interaction U may be estimated from
thermodynamic arguments. The Landau quasiparticle in-
teraction averaged over the angle between the momenta of
the two quasiparticles may be determined from the energy
as a function of the densities of the two components, f0

"# �

@2E=@n"@n# � @�#=@n", where E is the energy density of
the system. Since the momenta of the down atoms are
assumed to be much less than the Fermi momentum of
the up atoms, the quasiparticle interaction may be taken to
be independent of the angle between the quasiparticle
momenta. To estimate scattering amplitudes in terms of
Landau parameters, it is generally necessary to allow for
additional processes due to screening by particle-hole pairs
[11]. However, since we assume that n#  n", these pro-
cesses may be neglected, and we take the scattering am-
plitude to be independent of the direction of the momenta
of the quasiparticles and equal to

 U �
@�#
@n"
�

2�2

m"kF"
	; (4)

where, from Eq. (1), 	 � ���1� �3=2�@ ln�=@ lnn"	 and
kF� � �6�

2n��
1=3. For the case of a resonant interaction,

	 � �� and U � ��2�=3��F"=n" / 1=kF". This is very
different from the effective interaction at low densities,
which is proportional to a.

It is convenient to rewrite the expression (3) in terms of
response functions. On introducing the quantity !q � q 

v, using the relation np�1� np�q� � �np � np�q�=f1�
exp����p � �p�q�	g, and taking the continuum limit we
obtain
 

dP#
dt
� �2�jUj2

Z d3q

�2��3
q

�
Z 1
�1

d!
Im
#�q;!q �!�Im
"�q;!�

�1� e��!�!q���1� e��!�
; (5)

where

 Im
��q;!��
Z d3p

�2��3
�np��np�q����!��p���p�q��

(6)

is, apart from a factor of �, the imaginary part of the

Lindhard function, and the distribution functions are now
global equilibrium ones without the boost for the down
atoms.

Let us consider first the momentum relaxation rate for
T � 0. In this case, the Bose factors in (5) result in the
condition 0 � ! � !q. In the following we discuss two
important limiting regimes where simple expressions for
�P can be obtained.

(i) The low-velocity regime, m�#v kF#. In this case the
significant contribution to (5) comes from q � 2kF# with a
small energy transfer !q  k2

F#=2m�# . We can then use
Im
��q;!� � m�2� !=�4�

2q� and the resulting integrals
in (5) yield

 

1

�P
�

4�
25
j	j2

�
kF#

kF"

�
2
m�#v

2 �
4�
25

1

�0

�m�#v
kF#

�
2
; (7)

where 1=�0 � j	j2k4
F#=m

�
# k

2
F".

(ii) The high-velocity regime, kF#  m�#v kF". In this
case we can again carry out the integrations in (5) and
obtain

 

1

�P
�

2�
35
j	j2

m�3# v
4

k2
F"

�
2�
35

1

�0

�m�#v
kF#

�
4
: (8)

More generally, the scaled relaxation time ~�P � �P=�0

depends only on the variable ~v � m�#v=kF# provided
m�#v kF".

In Fig. 1, we plot the T � 0 momentum relaxation rate
1=~�P calculated numerically from (5) as a function of
velocity. For the numerical calculations we took m�# =m" �
1 and kF#=kF" � 0:1. The relaxation rate increases with
increasing v because the available phase space for scatter-
ing grows.

We now turn to nonzero temperature. Current experi-
ments on highly polarized gases achieve very low tempera-
tures, and we therefore first analyze the regime
T  TF#  TF", in which both components are degenerate.
Here kTF# � k2

F#=2m�# and kTF" � k2
F"=2m". Furthermore,

for small relative velocities, vkF#  kT, it is sufficient to
expand the integrand in (5) to first order in �!q. Using the

FIG. 1 (color online). The scaled momentum relaxation rate
1=~�P at T � 0 versus relative velocity v in units of kF#=m�# . The
full line is the result of numerical integration of Eq. (5), the
dashed line is low-velocity result (7), and the dotted line is the
high-velocity result (8).

PRL 100, 240406 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JUNE 2008

240406-2



symmetry property Im
��q;!� � �Im
��q;�!� we ob-
tain

 

dP#
dt
� �v

�jUj2

3kT

�
Z d3q

�2��3
q2
Z 1
�1

d!
Im
#�q;�!�Im
"�q;!�

�1� e�!��1� e��!�
:

(9)

For T  TF#, we can again use the result Im
��q;!� �
m�2� !=�4�

2q�, which yields for the relaxation rate in the
limit of low velocities the expression

 

1

�P
�

4�3

9
j	j2

m�#
k2

F"

�kT�2 �
�3

9

1

�0

�
T
TF#

�
2
: (10)

The T2 dependence is due to the fact that the phase space
for scattering increases with temperature. Equation (10)
shows that for equal masses of the two components and at
unitarity 1=�P � kT2=TF", as one would expect on dimen-
sional grounds because the effective interaction measured
in terms of the density of states of the up atoms is of order
unity.

Next we discuss the behavior at temperatures compa-
rable with or higher than TF#. When the masses of the two
components are very different, it becomes relevant to con-
sider also temperature scales characterized by T0 �
�m"=m#�TF". As an example let us consider the case when
TF#  T0  TF". In the classical regime for the minority
population (T � TF#) we have

 

Im
#
n#
�

�2�m�#
kTq2

�
1=2
e�!

2m�
#
=2q2kT�q2=8m�

#
kT sinh

�
!

2kT

�
:

(11)

We treat two limiting cases: (a) TF#  T  T0. Here
the upper limit on the q integration in (9) may be extended
to infinity and the result of carrying out the integra-
tions yields again a T2 dependence for 1=�P, which dif-
fers from (10) only by the replacement of �3=9 � 3:45 by
2.98. This suggests that the low-temperature result (10) is
accurate over a much wider temperature range.
(b) TF#  T0  T  TF#. Here the upper limit on the q
integration is 2kF". Using the fact that != sinh�!=2kT�
may be approximated by 2kT and exp��q2=8m�# kT� by
1, we obtain, by integrating first over ! and subsequently
over q, the expression m�# =�P � jUj

2m2
" k

4
F"=6�3. For a

dilute system with m�# � m" the effective interaction is
U � 2�a=m", and this result becomes m�# =�P � kF"n"�,
in agreement with the known result for the high-
temperature mobility of a heavy particle in a degenerate
quantum gas, the cross section being � � 4�a2.

Experimental considerations.—We now relate our re-
sults for the homogeneous case to experimentally observ-
able features in the presence of a trapping potential V�,
which will in general be different for the two species. The
momentum relaxation rate is most directly probed by ex-

citing the spin dipole mode of a Fermi gas above the
critical polarization where the system is normal at all
temperatures [1,6]. Let us assume that the cloud of down
atoms is displaced by a distance �X from the equilibrium
position in the harmonic trap. Depending on the amplitude
of the displacement (and consequently on the velocity
acquired by the minority component due to the external
force) as well as on the value of temperature, the cloud
either oscillates with weak damping around �X � 0 (col-
lisionless regime) or relaxes towards equilibrium without
any oscillations (hydrodynamic regime).

In the collisionless limit the frequency of the oscillation
is readily obtained in the case of large imbalance where it is
sufficient to consider the single quasiparticle Hamiltonian
to describe the motion of the minority component [12]. The
interaction energy of a down atom is ���F". In the
Thomas-Fermi approximation, �F" � V" is a constant.
Thus, the total potential felt by a down atom is V# � �V".
The Hamiltonian for a single down atom then has the form
Hsp � p2=2m�# � V# � �V". The interaction with the ma-
jority component is taken into account through the effec-
tive mass m�# and the change in the potential caused by the
interaction with the up atoms. For simplicity we restrict
ourselves to a resonant interaction, in which case � is
independent of density and, from this Hamiltonian, the
frequency !D of the spin dipole mode for a harmonic
trap is easily calculated to be [6,12]

 !D � !#

�������������������������������������
m#
m�#

�
1�

m"!
2
"

m#!2
#

�
�vuut ; (12)

where!� is the oscillation frequency in the trap for species
�. Measurements of the spin dipole frequency thus provide
a unique opportunity to test directly the effects of inter-
actions which, according to the theoretical estimates of �
and m�# , should increase the value of the frequency by a
factor 1.23 when the trapping potential is harmonic and the
same for the two species. The spin dipole mode, however,
is well defined only in the collisionless limit !D�P � 1. It
becomes overdamped in the hydrodynamic regime
!D�P  1 since the spin current is not conserved by
collisions [13].

In order to estimate whether under current experimental
conditions the spin dipole mode will be in the hydrody-
namic or in the collisionless regime, we calculate !D�P. It
is convenient to express results in terms of the amplitude of
the displacement of the down-atom cloud �X, which is
controllable experimentally. We shall assume that the dis-
placement of the down-atom cloud is sufficiently small
(�X R" where R" is the radius of the majority cloud)
that the density of up atoms may be regarded as uniform
when estimating the relaxation rate. The relative velocity
of the two components is given by v � !D�X. We shall
adopt the values N" � 107, and N#=N" � 0:026 (TF#=TF" �
0:3) corresponding to conditions achieved in the MIT
experiment [1] for a mixture of 6Li atoms in two different
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hyperfine states, together with the values � � 0:6 and
m�# =m# � 1 obtained theoretically [6,9]. We approximate
!D by the trap frequency!0, which we take to be the same
for both species. The lower full line in Fig. 2 shows
1=!0�P as a function of �X=R" obtained from Eq. (5) by
numerical integration for T � 0, while the lower dashed
line is the expression (7). The upper lines are for a tem-
perature T � 0:03TF", the full one being the result of a
numerical calculation and the dashed line is the sum of the
results (7) and (10), which, expressed in terms of the
number of up atoms, are

 

1

!0�P
�

8�
25
�6N"�1=3�2

m�#
m"

�
TF#
TF"

�
2
�
�X
R"

�
2

(13)

and

 

1

!0�P
�

2�3

9
�6N"�1=3�2

m�#
m"

�
T
TF"

�
2
; (14)

where we have used the result 	��� for a resonant inter-
action and the fact that kTF" � k2

F"=2m" � �6N"�1=3!0. The
plots demonstrate that the analytical results are a good
approximation to those obtained by direct numerical inte-
gration in the regimes of experimental interest. The sum of
the results (7) and (8), which is not shown, is an even better
approximation to the numerical results.

The calculated values of !0�P demonstrate that, for the
experimental conditions now attainable at MIT, the polar-
ized normal phase is in a regime intermediate between
collisionless and hydrodynamic behavior, implying signifi-
cant damping of the spin dipole mode. At lower tempera-
ture, the gas enters the collisionless regime.

How important collisions are in a given mode is sensi-
tive to the anisotropy of the trap, which we have neglected
so far. For instance, for a cigar-shaped trap (!z < !?) the
transverse mode will be more collisionless, the value of
1=!D�P being multiplied by a factor �!z=!?�1=3, for a
fixed value of �!2

?!z�
1=3. When the two species are differ-

ent elements, the value of!0�P will depend on the trapping
potentials of the two species, which can be varied inde-
pendently of each other.

For low velocity,m�#v kF#, one sees from (7) and (10)
that the momentum relaxation rate scales as m�# . Conse-
quently, since m�# � m# the spin motion can be made more
collisionless by trapping an atom mixture with a lighter
minority component. However, calculations indicate that
this effect is reduced due to the fact that, at unitarity, the
scattering amplitude for the case of extreme imbalance
increases with decreasing m#=m" < 1 [9]. For m#=m" > 1
the scattering amplitude is predicted to be approximately
constant and therefore 1=�P / m# in this regime. Thus, the
spin motion becomes more hydrodynamic for m#=m" > 1.
It would be interesting to test these predictions
experimentally.

In conclusion, we have demonstrated that for a strongly
polarized atomic gas with resonant interactions, scattering
amplitudes exhibit a universal behavior, just as thermody-
namic properties do [14]. Predictions for the damping of
the spin dipole mode have been presented, and it would be
valuable to make measurements of the mode. Our approach
may be extended to less highly polarized gases by includ-
ing the effects of screening by the minority component.
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FIG. 2 (color online). The quantity 1=!0�P determining the
damping of the dipole mode as a function of the amplitude of the
oscillation for T � 0 and T � 0:03TF". (For details see text.)
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