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We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in
realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we
numerically reproduce the recent experimental observation that the addition of a small fraction of 41K
induces a significant loss of coherence in 87Rb, providing a simple explanation. We then investigate the
robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum
emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous
lattices.
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Ultracold degenerate gases in optical lattices provide an
unprecedented toolbox for realizing experimentally what
were once just toy models sketching the key features of
complicated condensed matter systems. One prominent
example is the Bose-Hubbard (BH) model, originally in-
troduced as a variant of the better known Hubbard model
[1] and later adopted for the description of superfluid 4He
trapped in porous media [2]. Several years after the intro-
duction of this simple yet challenging toy model, Jaksch
and co-workers suggested that it could be realized in terms
of ultracold bosonic gases trapped in optical lattices [3] and
were soon proved right by a breakthrough experiment
where the hallmark superfluid-insulator quantum phase
transition of the BH model was observed [4].

Recently, several experimental groups directed their
efforts to the realization of more complex generalizations
of the Hubbard model, involving mixtures of particles
obeying either the same or different statistics. Beyond their
theoretical appeal, these systems are relevant to interesting
applications such as implementation of disorder [5], asso-
ciation of dipolar molecules [6], schemes for quantum
computation [7], and mapping of spin arrays [8].

Most of the experimental efforts on optical lattice sys-
tems have been directed to boson-fermion mixtures
[5,9,10], while fermion-fermion and boson-boson (BB)
mixtures have been somewhat ignored. Very recently, the
Florence group performed an experiment on a harmoni-
cally trapped BB mixture of atomic 41K and 87Rb with
strong interspecies repulsion [11]. Expectedly, the pres-
ence of a relevant K fraction modifies the quantum phase
transition occurring in Rb. More surprisingly, this effect
turns out to be sizable even for a small overlap between the
two atomic species [11]. Strongly interacting BB mixtures
are also the subject of a recent theoretical investigation,
whose main observation is that strong interspecies repul-
sion can substitute for disorder, driving a mixture loaded in

a homogeneous 1D lattice into metastable quantum emul-
sion (QE) states exhibiting glassy features [12].

In the present work, we introduce a unified framework
for the description of lattice BB mixtures with strong
interspecies interactions in realistic conditions and differ-
ent physical regimes encompassing and generalizing the
above-described findings [11,12]. In particular, we explain
the apparently surprising observation that the coherence
properties of a bosonic system can be reduced significantly
even in the presence of a single interface with a second
bosonic species [11]. Furthermore, we establish the range
of parameters for which the intuitively expected opposite
behavior of increased coherence is recovered. Concerning
QEs, we show that they are, in principle, compatible with
the inhomogeneity arising from confining potentials typi-
cal of experiments, albeit in a restricted range of parame-
ters. Specifically, while in the homogeneous case a
sufficiently strong interspecies repulsion ensures the oc-
currence of QE states [12], in the experimentally relevant
inhomogeneous case, the difference of intraspecies repul-
sions turns out to be a fundamental critical parameter.

The systems under concern provide a realization of the
two-flavor BH Hamiltonian
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where the lattice boson operators ayf;j, af;j, and nf;j �

ayf;jaf;j create, destroy, and count atoms of type f at site
j, respectively. The parameters Uf and U12 quantify the
intra- and interspecies BB (repulsive) interaction, respec-
tively, Jf is the hopping amplitude, and vf;j � kf�j� j
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is the standard harmonic trapping potential felt by bosons
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of species f at lattice site j. By mf, kf, and j0
f, we denote,

respectively, the mass, the curvature, and the minimum
point of the harmonic potential vf;j of species f.

Since our aim is the study of strongly interacting mix-
tures, it is convenient and effective to adopt a mean-field
approach based on the assumption that the ground state of
the system is the product of on-site factors j�i �

Q
jj ji,

j ji �
P
n1;n2

c�j�n1;n2
�ay1;j�

n1�ay2;j�
n2 j�i, where j�i is the vac-

uum state, af;jj�i � 0, and the coefficients cn1;n2
are

determined via energy minimization at fixed atomic pop-
ulations N1 and N2. Owing to a much lower computational
demand, this mean-field approach provides qualitative re-
sults on systems that would be beyond the present capa-
bilities of more quantitative numerical methods, such as
quantum Monte Carlo (QMC), density matrix renormal-
ization group, or time-evolving block-decimation
algorithms.

Hamiltonians similar to Eq. (1) have been considered
previously [3,6,8,13–22], possibly referring to different
internal states of the same bosonic species [8,15] to spin-
1 [18] or dipolar bosons [6,21]. Most of the previous work
focuses on the phase diagram of homogeneous lattices, of-
ten adopting a mean-field approximation similar to ours
[6,13,15–18]. However, our approach is characterized by
some features that have not been considered in the litera-
ture, at least simultaneously. First, our mean-field is fully
site-dependent and does not reduce to an effective single-
site theory. This allows us to describe phase-separated
systems and to consider realistic harmonic trapping poten-
tials. Furthermore, we fix the bosonic populations N1 and
N2 rather than the corresponding chemical potentials �1

and �2. Again, this allows us to make direct contact with
experimentally relevant situations and avoids the ‘‘species
depletion’’ problem discussed in Refs. [15,17].

The method is first applied to a situation reproducing the
experimental conditions in Ref. [11], where a bosonic
mixture of Rb and K was loaded in an optical lattice.
The potentials trapping the two atomic species had the
same curvature kf, but, since m1 �m2, their minima were
displaced in the vertical direction: j0

f � mfg�=�4kf�,
where g is the gravitational constant and �=2 is the optical
lattice spacing (henceforth, the subscripts 1 and 2 will
denote Rb and K, respectively). An important consequence
of the interplay between the ensuing asymmetry and the
strong interspecies repulsion is the tendency towards full
phase separation, minimizing the number of interfaces
between the two species. In fact, in the Florence experi-
ment, the interspecies overlap is estimated to be limited to
one lattice site in the vertical direction. Despite the occur-
rence of a single phase interface, the effect of K on the
coherence properties of Rb turns out to be sizable [11].
More in detail, it has been observed that a modest quantity
of K (around 10% of Rb) reduces the coherence of Rb
significantly, moving the superfluid-insulator transition
point to smaller values of the optical lattice depth s. The
authors of Ref. [11] also remark that a naive argument

based on Ref. [6] results in a prediction opposite to the
observed behavior: The presence of K increases the local
density of Rb, which would cause an increase in the
coherence of the latter.

This argument is indeed valid for most of the phase
diagram of the BH model describing an atomic cloud
loaded in a homogeneous optical lattice. However, clear
exceptions are found in the proximity of the Mott lobes,
where an increase of the (local) density—or chemical
potential—results in a sharp drop in the condensate frac-
tion. Furthermore, it should be emphasized that such a
phase diagram describes a homogeneous system in the
thermodynamic limit, whereas here we are dealing with a
finite and inhomogeneous system. The site-dependent po-
tential acts like a local chemical potential for a system with
fixed total population. As a result, at sufficiently high ratios
of interaction to kinetic energy, configurations of the sys-
tem can be found where superfluid and Mott-insulating
domains coexist [23,24]. The density of the system as-
sumes the so-called wedding-cake or ziggurat profile, the
plateaus corresponding to (quasi-)Mott-insulator domains.
When the configuration is such that the topmost plateau
involves a fair number of sites, the density profile responds
to an increase in the total population according to a pre-
dictable sequence. At first, a domelike essentially super-
fluid structure appears on top of the highest plateau.
Subsequently, the width and height of this structure in-
crease, leading to an increase in the system coherence.
When the tip of the dome gets too close to the next level
of the ziggurat, the dome flattens, its central part turning
gradually into a plateau. Correspondingly, there is a drop in
the overall coherence of the system [23].

The above-described single-species scenario is captured
quite satisfactorily by the Gutzwiller mean-field approxi-
mation [3,25–27]. We will now show that it bears a strict
relation with the experimental observations reported in
Ref. [11] about the Rb-K BB mixture. Figure 1 shows
results obtained from a double-species Gutzwiller mean-
field approach where we have adopted physical parame-
ters—Jf, Uf, U12, kf, atomic density at the trap center,
population ratios—in the experimentally determined
range [11,28]. For the sake of simplicity, we have focused
on a 1D lattice as mean-field results are essentially inde-
pendent of the dimensionality [29]. Figure 1(a) shows the
local superfluid parameter j�1;hj

2 � jh�ja1;hj�ij
2 of Rb

alone as a function of the relevant populationN1 and lattice
site label h (the darker the hue, the larger j�1;hj

2). The drop
in the superfluid parameter at the trap center signals the
formation of new ziggurat levels from the flattening of
coherent domes. Figure 1(b) shows the same quantity as
in Fig. 1(a) yet in the presence of 30 atoms of K (j�2;jj

2 is
not shown). The main effect of the addition of K is that the
new structures of the (now asymmetric) ziggurat appear at
smaller populations N1. Figure 1(c) shows an estimate of
the coherence of Rb measured in terms of the relevant
condensate fraction f1

C [30] for the data in Figs. 1(a)
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(black) and 1(b) (gray). The presence of K is indeed
equivalent to an increase in Rb population, but, given the
oscillatory behavior of f1

C, this does not necessarily result
in an increase of the overall coherence of Rb. A small
fraction of N2 can cause either an increase or a decrease of
f1
C, depending on the value of N1. The experimental mea-

sure of coherence, i.e., the so-called visibility V [11,31],
exhibits similar oscillations as in Fig. 1(c), albeit with a
different envelope. Figures 1(d) and 1(e) show the changes
in V �1� produced by N2 � 30 K atoms, for two values of
N1. Note that Fig. 1(d) considers the same population ratio
as estimated in the experiment [11] and reproduces quite
satisfactorily the observed loss of coherence. Guided by
Fig. 1(c), in Fig. 1(e) we change N1 from 340 to 400 to
probe the opposite phenomenon. It turns out that the pres-
ence of K enhances V �1� only at relatively low lattice
depths, while at large s the effect is again a loss of coher-
ence, albeit less pronounced. This result agrees with ex-
periments, where an increase of coherence was never
observed [28]. We now turn our attention to another inter-
esting feature of strongly interacting BB mixtures, i.e., the
possible occurrence of low-energy metastable states char-
acterized by a large number of interfaces, recently dis-
cussed in the ideal case of homogeneous lattices kf � 0
[12]. The authors of Ref. [12] observe that the QMC
simulations employed to determine the ground state of
the total HamiltonianH fail to equilibrate as soon asU12 �

Uf and ascribe this behavior to the presence of many low-
energy metastable states (where metastable refers to the

robustness of these configurations against the QMC mini-
mization algorithm, which is equipped with nonlocal
moves). Being characterized by a large number of inter-
faces separating single-species droplets, these metastable
states are dubbed quantum emulsions. The relevant ener-
gies are found to be linearly dependent on the number of
interspecies interfaces. One interesting feature of these
QEs is their spontaneous randomness, i.e., the fact that
the droplets exhibit a disordered spatial arrangement de-
spite the absence of any randomness in the Hamiltonian
parameters.

By adopting a self-consistent dynamical search algo-
rithm for the ground state of the homogeneous system in
its Gutzwiller form [32], we find that the BB mixture gets
trapped into a QE state whose energy depends on the
number of interfaces, in complete analogy with Ref. [12].
This is evident from Fig. 2 illustrating the situation on a
homogeneous lattice for different values of the hopping to
interaction ratios [33]. However, the homogeneous lattice
of Ref. [12] is a strongly idealized situation, in which the
only requirement for the occurrence of QEs is that U12 be
sufficiently larger than U1 and U2 [12,13]. Moving to the
inhomogeneous case typical of actual experimental situ-
ations, we find that �U � jU1 �U2j becomes a further
critical parameter for the existence of QEs. This is clearly
illustrated in Fig. 3. Figure 3(a) shows the average number
of interfaces as a function of �U, while the inset is
analogous of the leftmost panel in Fig. 2. Figures 3(b)
and 3(c) show typical configurations at small and large
values of �U, respectively. Note that the former is char-
acterized by a significant number of randomly arranged
single-species droplets. In this case J1 � J2 � 0:1U1, but
we obtain similar results also for J1 � J2, provided that
�U � 0. Clearly, the number of QE states at a given
energy will be smaller than in the homogeneous case,
owing to the reduced degree of symmetry of the system.
Indeed, in this case, the energy of each droplet does depend
on its position in the lattice, due to the local potential
contribution. Unlike the 1D case, in higher dimensions
the interface energy of a droplet depends on its size. This
fact, along with the larger lattice connectivity, is expected
to hinder the occurrence of QEs.

In summary, we have investigated the properties of a
strongly interacting bosonic mixture loaded into an optical
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FIG. 2. Number of interfaces vs energy for N1 � N2 � 180
particles on a 300-site 1D lattice. In all cases J1 � J2 � 0:1U1

and U12 � 1:5U1.

FIG. 1 (color online). (a) j�1;hj
2 vs N1 (s � 11, J1 � 0:022U1,

k1 � 7:9	 10�4U1); (b) same as (a) but in the presence of K
(N2 � 30, U2 � 0:65U1, J2 � 0:21U1, U12 � 2:22U1, k2 �
k1); (c) fC of Rb corresponding to (a) (black curve) and (b)
(gray curve); (d),(e) visibility of Rb vs lattice strength.
(f),(g) Configurations of 340 Rb (blue) and 30 K (red) atoms
for s � 11, along with the relevant trapping potentials (arbitrary
units). The height of each bar represents the local population nh,
whereas the darkness of the shading is proportional to j�j;hj2. In
(f) we set U12 � 0.
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lattice, going beyond the idealized situation of a homoge-
neous system. We considered the inhomogeneities arising
from the presence of the harmonic trapping potential typi-
cal of standard experimental setups as well as from the
differential gravitational sag originated by the difference in
the masses of the two bosonic species. We reproduced the
apparently surprising results of the first experiment involv-
ing a BB mixture [11], providing a simple explanation for
the observed loss of coherence of 87Rb in the presence of a
small fraction of 41K. Furthermore, our results predict that
the opposite phenomenon, i.e., the increase of coherence
predicted by the ‘‘naive argument’’ proposed in Ref. [11],
is limited to sufficiently shallow lattice depths. A complete
agreement between theory and experiment would require
the scaling to higher dimensions, more refined—and very
likely, far more demanding—numerical algorithms, and/or
more involved analytical studies than the present mean-
field approach. However, such a program is not likely to
add significant new elements to the scenario inferred by
our analysis, which captures the essential physics of the
phenomenon under examination.

We then investigated the effect of inhomogeneity on the
QE states formerly predicted on homogeneous lattices
[12]. In particular, we found that, at variance with the ho-
mogeneous case, a large U12 is not sufficient for their oc-
currence, a further critical condition being a small U2�
U1. This suggests that Feshbach resonances could be a cru-
cial ingredient for the experimental observation of QEs in
heteronuclear mixtures. An intriguing alternative possibil-
ity for the realization of lattice BB mixtures with directly
built-in conditions J1�J2 and U1 � U2 could be provided
by a generalization of the models considered in Ref. [21],
by considering dipolar bosons placed on two neighboring
lattices with angular relations such that the two sets of
atoms interact via a strong interspecies repulsion U12.

The authors acknowledge fruitful discussions with
F. Minardi and J. Catani.

[1] F. D. M. Haldane, Phys. Lett. 80A, 281 (1980).
[2] M. P. A. Fisher et al., Phys. Rev. B 40, 546 (1989).
[3] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).
[4] M. Greiner et al., Nature (London) 415, 39 (2002).
[5] S. Ospelkaus et al., Phys. Rev. Lett. 96, 180403 (2006);

U. Gavish and Y. Castin, ibid. 95, 020401 (2005).
[6] B. Damski et al., Phys. Rev. Lett. 90, 110401 (2003).
[7] A. J. Daley et al., Phys. Rev. A 69, 022306 (2004).
[8] A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90,

100401 (2003); L.-M. Duan et al., ibid. 91, 090402
(2003).

[9] K. Günter et al., Phys. Rev. Lett. 96, 180402 (2006).
[10] D.-S. Lühmann et al., arXiv:0711.2975.
[11] J. Catani et al., Phys. Rev. A 77, 011603(R) (2008).
[12] T. Roscilde and J. I. Cirac, Phys. Rev. Lett. 98, 190402

(2007).
[13] E. Altman et al., New J. Phys. 5, 113 (2003).
[14] M. G. Moore and H. R. Sadeghpour, Phys. Rev. A 67,

041603 (2003).
[15] G.-H. Chen and Y.-S. Wu, Phys. Rev. A 67, 013606

(2003).
[16] K. Ziegler, Phys. Rev. A 68, 053602 (2003).
[17] A. Isacsson et al., Phys. Rev. B 72, 184507 (2005).
[18] K. V. Krutitsky and R. Graham, Phys. Rev. A 70,

063610 (2004); K. V. Krutitsky et al., ibid. 71, 033623
(2005); M. Yamashita and M. W. Jack, ibid. 76, 023606
(2007).

[19] A. B. Kuklov et al., Phys. Rev. Lett. 92, 050402 (2004).
[20] L. Mathey, Phys. Rev. B 75, 144510 (2007).
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FIG. 3 (color online). QEs in the presence of a harmonic
confinement; (a) average number of interfaces (over 100 realiza-
tions) vs U2 �U1; (b) same as Fig. 2(a); (c),(d) local densities of
bosons in two limiting situations. The color key is the same as
Figs. 1(f) and 1(g). In all cases N1 � N2 � 180 and k1 � k2 �
10�4U1;other parameters are as in Fig. 2.
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