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Identification of Functional Information Subgraphs in Complex Networks
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We present a general information theoretic approach for identifying functional subgraphs in complex
networks. We show that the uncertainty in a variable can be written as a sum of information quantities,
where each term is generated by successively conditioning mutual informations on new measured
variables in a way analogous to a discrete differential calculus. The analogy to a Taylor series suggests
efficient optimization algorithms for determining the state of a target variable in terms of functional
groups of other nodes. We apply this methodology to electrophysiological recordings of cortical neuronal
networks grown in vitro. Each cell’s firing is generally explained by the activity of a few neurons. We
identify these neuronal subgraphs in terms of their redundant or synergetic character and reconstruct
neuronal circuits that account for the state of target cells.
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Information plays a central role in conditioning structure
and determining collective dynamics in many complex
systems. For example, the ability to process and react to
information certainly influences how neurons and synap-
ses, or genes and proteins, interact in large numbers to
generate the complexity of cognitive and biological pro-
cesses. Despite their importance, however, systematic
methodologies for identifying functional relations between
units of successive complexity, involved in information
processing and storage, are still largely missing.

Motivated by recent theoretical developments and ex-
perimental breakthroughs, new interest has arisen in appli-
cations of information theory to dynamical and statistical
systems with many degrees of freedom [1]. Specifically, it
has been shown that information quantities can identify
and classify spatial [2] and temporal [3] correlations and
reveal if a group of variables may be mutually redundant or
synergetic [4,5]. In this way, an information theoretic treat-
ment of groups of correlated degrees of freedom can reveal
their functional roles as memory structures or those ca-
pable of processing information.

The application of these insights to identify functional
connectivity structure is still just beginning [5] but should
provide a useful complement to other established ap-
proaches [6] by directly relating observable dynamics or
statistics to information structures. To date, the identifica-
tion of functional relations between nodes of a complex
network has relied on the statistics of motifs. These are
specific (directed) subgraphs of k nodes that appear more
abundantly than expected in randomized networks with the
same number of nodes and degree of connectivity [6,7].
Although powerful for small subgraphs, this approach
scales up poorly since the number of different subgraphs
explodes combinatorially with increasing number of nodes
k. Consequently, the extensive searches that are necessary
for measuring motif frequencies become prohibitive be-
yond about k = 5. A general solution to this curse of
dimensionality is to perform targeted searches guided by
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quantitative expectations for finding the most informative
node combinations relative to an external signal or to other
parts of the system.

Here, we present an approach based on the rigorous
properties of information theory applied to the correlated
statistical state of many variables. The uncertainty
(Shannon entropy) in the state of any target variable can
be expressed in terms of a cluster expansion of information
quantities involving a successively larger number of vari-
ables. The sign and magnitude of each term in the expan-
sion determines the functional connectivity among nodes
to that order, specifically whether a set of nodes is func-
tionally independent, redundant, or synergetic. Because the
Shannon entropy is positive definite, this expansion gives a
systematic approximation to the state of the target; the
expansion can be truncated at any order to construct ap-
proximate nonexhaustive search algorithms, analogous to
gradient methods in other optimization problems. We dem-
onstrate the efficacy of this method through its application
to spike time series of cortical neuronal networks grown
in vitro.

Information is a relative quantity, quantifying the reduc-
tion in uncertainty of a variable’s statistical state given
knowledge of others with which it is correlated. The un-
certainty in the state of X can be quantified by its Shannon
entropy [8] S(X) = —> , p(x)log, p(x), where p(x) are the
marginals for each state x of X. Note that S(X) = 0, where
S(X) = 0 corresponds to precise knowledge of X and the
probability distribution p(x) =1 for some state x.
Measuring correlated variables Y; to X contributes to
knowledge of its state and reduces its uncertainty; thus,
S(X) = S(XKY}—1) = S(X|{Y},), with k = n for n total
variables and where S(X|Y) refers to the conditional en-
tropy of X given Y [8]. We use the notation {Y}; to refer to
the set Yy, ..., Y;. The difference between the entropy of X
and its entropy given the joint state of a set {Y}, is the
information in the set: I(X;{Y},) = S(X) — S(X|{Y},) =
I(X;{Y};_). These relations also specify the optimization
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problem of minimizing the uncertainty in X given k mea-
surements {Y}, within a larger (possibly infinite) set.
Specifically, if a set exists at some order k so that
S(X|{¥},) = 0, and therefore I(X;{Y};) = S(X), then it
fully determines the state of X, and no uncertainty remains.
Each measurement can only reduce or leave unchanged
S(X), while information quantities are symmetric under
permutation of the Y; so that the maximal entropy reduc-
tion from any given set {Y}; is unique. The challenge
resides in finding the measurement set of size k resulting
in the smallest remaining uncertainty. The computational
complexity of this search grows combinatorially with the
number of arrangements of size k within n variables, which
quickly becomes prohibitive. To evade this problem, we
introduce the exact expansion
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The variational operators in Eq. (1) define the change in
entropy resulting from a measurement as
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and so on. Higher order variations follow automatically
from the successive application of the first variation, re-
sulting in a simple chain rule. Thus, variations to any order
k are symmetrical under permutations of the Y;. This
expansion has two important properties. First, each term
in the expansion at order k accounts for an irreducible set
of correlations among a size-k group of Y; nodes with the
target X. Statistical independence among any of the Y;
results in a vanishing contribution to that order and termi-
nates the expansion. For example, if all Y; are mutually
independent, all variations for k > 1 vanish identically and
the information about X is given by > ,/(X;Y;), that is, the
first order terms in Eq. (1). If the Y; are correlated in pairs,
but not in higher order multiplets, then only terms with k =
2 will be present, and so on. Thus, for a system where not
all higher order correlations are realized, expression
Eq. (1) allows the identification of correlated submultiplets
and determines their mutual organization in specifying the
state of X.

The second important property of this expansion is that
the sign of each nonvanishing variation reveals the infor-
mational character of the corresponding multiplet.
Specifically, negative indicates that the k-multiplet con-
tributes to the state of X with more information than the

sum of all its subgroups (synergy), while positive indicates
the opposite (redundancy). We define a synergetic (redun-
dant) core as a set {Y}; such that its variation and the
variations of all its subgroups of two or more nodes are
negative (positive). Explicit examples where the Y; are
inputs of a logical circuit and X is the output (e.g., an
AND circuit) confirm that the sign of any variation of the
Y, identifies synergetic arrangements to any order.
Likewise, arrangements where the same information is
shared among some of the Y;, as in a Markov chain, result
in the sign of the variation indicating redundancy. Low
order (k = 3) examples of these relations have been
worked out recently [4,5], and their detailed generaliza-
tion will appear elsewhere. Also, the order-by-order syn-
ergy or redundancy captured by each term in Eq. (1) gen-
eralizes the coefficient of redundancy R{(X,{Y};) =

K 1(X;Y;) — I(X;{Y};) proposed by Schneidman et al.
Note that R% gives the global information deficit (or excess
if RY < 0) of a set of size k, relative only to the sum of all
binary contributions, but fails to isolate the nonindepend-
ence due to triplets and higher order interactions from that
of the full set [9].

In this Letter, we use the expansion in Eq. (1) to define
the problem of determining the set and decomposition of
the Y; in terms of functional information arrangements that
best account for the stochastic behavior of a target X.
Because the entropy S(X[{Y};) = 0 for all k, this defines
a well posed optimization problem, with a single global
minimum for each set of possible measurements.

To illustrate this methodology, we apply it to temporal
action potential activity from murine frontal cortex neuro-
nal cultures grown in vitro on noninvasive microelectrode
arrays (MEAs) [10]. Figure 1(a) shows an example net-
work growing on an MEA and Fig. 1(b) typical time series
data. Details of MEA fabrication and culture preparation
are described elsewhere [5,11]. These experimental plat-
forms have become model systems for studying living
neuronal networks in controlled environments. Recent
progress includes studies of dynamical patterns of collec-

—_
e}
T
!

Neuron number
)]
T

1 I
0 5 10
(b) Time step

FIG. 1 (color online). (a) Neuronal culture over a microelec-
trode array (white circles; bar = 40 pwm). (b) Detail of a spike
time series. The box shows network state 011101100 (bottom to
top).
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tive activity [12-15], connectivity structure [5], network
growth and development [14], and even learning and ac-
tivity pattern modification [16] via external stimulation.
Results presented here refer to 62 cells of a mature (42 days
in vitro) cortical network. We analyze a 5 h recording
(2.3 X 10° spikes) of network activity. We verified that
this is long enough for accurate probability estimation
[17], while avoiding issues of nonstationarity. We sample
the analog field potentials at each electrode at 44 kHz and
use standard data acquisition software to determine time
stamps for action potentials of individual neurons [11]. To
analyze patterns of neuronal activity, we construct binary
states [Fig. 1(b)] for each neuron’s time series using tem-
poral bins of 7 = 10 ms; 1 is recorded if a neuron fires
within a bin and O otherwise. Results are insensitive to
changes in 7 within a few ms, with 7 = 10-20 ms being a
good range [18]. Probability distributions for states of k
neurons are estimated via frequencies and provide the basis
for calculating information theoretic quantities. Probabili-
ties are considered significant if substantially larger than
from a null model with randomized spiking at observed
rates for each neuron. Nearly all of the network activity
occurs as global coordinated spiking events, known as
network bursts or avalanches [14,15,19]. For these reasons,
estimation of probabilities become possible within our
samples, for a large number of neurons (15-20), with
negligible error in mutual informations. Most results below
refer to this regime. Slightly larger errors of 10-20% are
observed for some target neurons (not shown), relative to
groups of 20-30 cells, but become again smaller for larger
groups due to the highly coordinated nature of cortical
activity.

Figure 2 shows the relative entropy reduction of a target
neuron, due to successive measurements of other neurons.
Different lines correspond to searches for the optimal
sequence of measurements at different orders of approxi-
mation in the expansion in Eq. (1). A search to exact order
means that all 1(X;{Y},) are considered, given the previous
{Y};_, and the set {Y}, with greatest information gain is
chosen. Most neurons show an initial large drop in entropy
due to the measurement of only a few other cells in the
network (typically = 5) and a subsequent slower informa-
tion gain as more cells are measured.

Figure 2 (inset) shows the histogram of the ratio of final
to initial entropy for all 62 neurons. Final entropy refers to
the fraction of a neuron’s initial entropy left unaccounted
for once all other neurons are measured. Remarkably, the
stochastic patterns of most cells can be nearly fully pre-
dicted by the activity of others, even if most degrees of
freedom in the actual network remain unobserved (we
estimate that only about 5—-10% of all neurons are mea-
sured). To better understand the informational nature of
arrangements of neurons, we show in Fig. 3(a) Rf for each
of the measured cells in the network. By this measure, most
cell groups are globally redundant (red) relative to their
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FIG. 2. Joint entropy of neuron 46 and a set of other neurons of

size k. The next neuron measured is chosen by maximizing the
variation to various orders; the neuron numbers appear for the
exact curve. Inset: Histogram of entropy fraction for each neuron
remaining after all possible measurements.

decomposition in terms of purely binary correlations to
other cells. About a third of the cells, though, show sub-
stantial synergy (blue) that persists despite many sequen-
tial measurements. Figure 3(b) shows the distribution of
each term in the expansion in Eq. (1) to order k. We include
all multiplets up to order k = 2, and thereafter use a
random sample of 36 000 multiplets. Recall that the value
and sign of each term in the expansion indicates redun-
dancy or synergy relative to the sum of all submultiplets of
lower order. Globally redundant multiplets often result in
terms with alternating signs to lower orders, while a
smaller number of multiplets corresponding to synergetic
arrangements have negative contributions at every order.
Since a negative variation indicates the relative redundancy
of the set to its subsets, the individual variations alternate
signs with order. To determine whether a set is purely
redundant, its variation and all the variations of its subsets
must be positive.

Figure 4(a) shows the frequency of synergetic and re-
dundant cores, while Fig. 4(b) shows the reconstruction of
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FIG. 3 (color). (a) Sorted global information deficit or excess
of a multiplet, relative to the sum of the pairwise mutual
informations: Rf. (b) Values of each term in the expansion in
Eq. (1) vs k for 36 000 randomly sampled variable combinations.
White to blue: 0-0.5%; red to yellow: 0.5-100%.
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FIG. 4 (color). (a) Frequency of redundant (red) and synergetic
(blue) cores versus size k. (b) Purely redundant (red) and purely
synergetic (blue) circuits relative to neuron 46. Neurons and
groups with the most information about 46 are closest to the
center; c.f. Fig. 2. Arcs identify neurons that participate in
multiple functional groups.

circuits from functional subgraphs which account for the
activity of target neuron 46 of Fig. 2. Evidently, the target
neuron is part of both redundant and synergetic functional
multiplets, with the former being substantially more abun-
dant. The most informative neuron is labeled 42, but its
information about the target is shared to a large extent with
neurons 14 and 19. The target neuron is also part of a
synergetic circuit with other neurons, several of which
are part of smaller mutually redundant subgraphs. Some
of these can, at least partially, be interchanged with other
neurons carrying the same information, resulting globally
in an interconnected ensemble where specific synergetic
functional relationships are embedded on robust redundant
cell arrangements.

In summary, we present a new information theoretic
approach to constructing functional subgraphs in complex
networks where nodes display observable stochastic dy-
namics. By performing targeted searches guided by ex-
pected information gain from new measurements, we avoid
some of the combinatorial issues involved in the search for
motifs in complex networks. We apply this approach to
action potential time series from cortical networks and find
that the activity of most neurons is to a large extent
determined by the observation of other cells. This finding
is remarkable because only a small portion (5-10%) of
cells are accessible to measurement, indicating that large
amounts of redundancy characterize neural network dy-
namics in these cultures. Despite these observations, an
important fraction of a neuron’s entropy and detailed firing
patterns is contained in multiple cell arrangements of

varying size. These findings agree well with recent neuro-
nal network reconstructions in terms of binary correlations
[20] and small multiplets [5], but also provide a new view
of the functional contribution of higher order correlations.
The identification of functional connectivity subgraphs in
living neuronal cultures is critical for designing future
experiments that promote computational tasks within neu-
ral networks and should find applications generally in other
complex systems.
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