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Single Cell Mechanics: Stress Stiffening and Kinematic Hardening
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Cell mechanical properties are fundamental to the organism but remain poorly understood. We report a
comprehensive phenomenological framework for the complex rheology of single fibroblast cells: a
superposition of elastic stiffening and viscoplastic kinematic hardening. Despite the complexity of the
living cell, its mechanical properties can be cast into simple, well-defined rules. Our results reveal the key
role of crosslink slippage in determining mechanical cell strength and robustness.
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Intracellular transport, cell locomotion, resistance to
external mechanical stress and other vital biomechanical
functions of eukaryotic cells are governed by an active
biopolymer gel: the cytoskeleton [1]. This gel is made up
of three types of biopolymers: actin, microtubules, and
intermediate filaments. These are crosslinked by a multi-
tude of associated proteins with different properties in
terms of connection angles, bond strengths, and bond life-
times. The actin cytoskeleton—the major force-sustaining
structure in the cell—is made up of filaments with lengths
of the order of a micrometer and presents a weak, local
structural order. The cytoskeleton also comprises molecu-
lar motors, associated proteins which move along actin or
microtubule filaments driven by chemical energy. It is not
understood how the cytoskeleton, in conjunction with bio-
chemical regulatory circuits, performs specific active me-
chanical tasks. When cells attach to biological material
they often biochemically recognize the binding partner.
The cytoskeleton organizes accordingly and produces a
mechanical response. Active cell responses such as con-
traction are well separated from passive rheological prop-
erties by the time scales over which they occur [2]. Passive
cell rheological properties have been studied with various
techniques on the subcellular and supercellular scale [3].
Through various measurement techniques on different eu-
karyotic cell types, a broad relaxation spectrum has arisen
as a common feature of passive, linear cell rheology [3,4].
The description of the nonlinear regime remains elusive;
both stress stiffening [5—9] and linear responses to large
stretch [8—11] have been observed.

In this Letter we present experiments in which individ-
ual cells are stretched between two plates using a micro-
plate rheometer [2,7] (Fig. 1). In earlier work, we have
shown that small, quasidifferential cell deformations reveal
an essentially elastic response described by a differential
modulus that is dependent on cell prestress but independent
of cell length [7]. Here we show that large deformations
reveal an inelastic response with a (counterintuitive) linear
force-length relation, and that both regimes superpose to
generate the response to more complex deformations.
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When the inelastic cell response is abolished by biochemi-
cal fixation (which maintains the structure but prevents
crosslink sliding) the cell exhibits the nonlinear response
which can be predicted from the measurement of the
differential modulus. Thus, despite the complexity of the
eukaryotic cell cytoskeleton and immense cell heterogene-
ity, passive nonlinear cell rheology can be reduced to
simple rules.

Experimental setup.—We refer to [2,7] for details. A
3T3 fibroblast [12] adheres between two fibronectin-coated
glass microplates. One of them is flexible: its deflection
gives the force F acting on the cell in the direction per-
pendicular to the plate surface. A computer reads F and the
cell length L, and adjusts the position of the plate using a
piezoelectric actuator as a function of the given experi-
mental protocol. Experiments are performed at 35 °C, in
standard medium with Lysophosphatidic acid 50 uM
(Sigma). All results described here are reproducible for
strongly adhering fibroblasts that sustain pulling forces of
100 nN for several hours; this ends up being about 30% of
the cells in culture.

Loading and unloading at constant rate.—We stretch
the cell by 100% at a constant-rate L while measuring the
force F [Fig. 2(a)]. The initial slope dF/dL decreases until
reaching a constant value at a stretch ~10% [Fig. 2(b)].

FIG. 1.

A fibroblast adhering between two microplates. The
cell has a well-controlled and simple geometry. It adheres to the
microplates via biochemical linkers, which help define the state
of the cell cytoskeleton. (a) Right after contact. Bar: 10 pm.
(b) After ~20 min at 35 °C, strongly adhering cells often adopt a
concave shape. From the apparent diameter D, (arrows) we
estimate the initial area Ay := 7(D,/2)?. (c) Under large stretch.
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FIG. 2. Loading and unloading at constant rate L. (a) Imposed
length L and measured Lagrangian stress F/A, (where A is the
initial cell contact area) as a function of time. After each ramp, F/
stabilizes at a nonzero value & (dotted line). (b) F/A, as a
function of L/L, (where L, is the steady zero-force-length)
during loading and unloading. Black curve: L =1 um/s.
Gray curve: L = 0.03 um/s.

Beyond 10% and up to 100% stretch, the F(L) relation is
approximately linear. After loading, the cell length L is
held constant for a few minutes; the force F relaxes to a
steady nonzero value % which does not evolve faster than
about 1 nN/s. An analogous response is observed upon
unloading. The procedure is repeated with different rates L
between 3 nm/s and 10 wm/s. The rest force § is inde-
pendent of the loading rate in the explored range.

Small amplitude stiffening, large amplitude linearity.—
To explore small and large deformation amplitudes simul-
taneously, we perform a ramping perturbation with super-
imposed harmonic oscillations, L(f) = vt + A, sin(w?).
Figure 3 shows a typical experiment. The response to small
oscillations indeed stiffens with increasing stress. Yet, the
average over an oscillation period of the force (F) and
length (L) are linearly related as inferred from the position
of the loops. Thus, we observe both responses as a super-
position: stress stiffening for small amplitude deformations

FIG. 3. Small amplitude stiffening, large amplitude linearity.
(a) F and L as a function of time. (b) F/A, as a function of L/L,.
For clarity only a few loops are shown. Gray curves: experi-
mental data. Black curves: fit using Egs. (1)—(5), with y = 5 and
B = 0.25. The dashed line highlights the linear relation between
the average values. Inset: ““Differential”’ modulus |®| from the
oscillations as a function of average force (F) for the data in (b).
The modulus exhibits stress stiffening, following the master
relation reported in [7].

(as reported in [7]) in addition to a linear force-length
relation at large deformations.

Small amplitude reversibility, large amplitude irreversi-
bility. —We study the amplitude dependence at a constant
deformation rate |L|. The essential feature of this protocol
[Fig. 4(a)] are the turning points separated at various
distances. This is done to study the reversibility of the
response. As Fig. 4(b) shows, the reversibility of the re-
sponse upon a change of direction is determined by the
distance to the previous turning point. Where turning
points are separated by less than 10% stretch, the response
is reversible (elastic). More than 10% stretch beyond a
turning point, the response becomes irreversible (inelas-
tic): the F(L) curve does not retrace its path upon direction
reversal. In this inelastic regime the F(L) relation is ap-
proximately linear. Its nonzero slope leads to a translation
of the elastic region by the inelastic deformation, a behav-
ior known in plasticity as linear kinematic (or directional)
hardening [13,14]. The inelastic contraction under pulling
tension between X and G in Fig. 4(b) is a strong
Bauschinger effect (a decrease in yield stress upon unload-
ing) [15].

Rate dependence.—In the inelastic regime the hysteresis
becomes more pronounced with increasing stretch rate
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FIG. 4. Elastic/inelastic behavior. (a) Imposed length L as a
function of time. (b) /A, as a function of L/L for a given cell.
Reversible (elastic) behavior upon direction reversal is observed
only close to a previous turning point, as in C, E, H. The
response becomes irreversible (inelastic) after a steady large
deformation: at the turning points D, F, G, I, the F(L) curve
does not retrace its previous path. Between F and I the experi-
ment is equivalent to C—F, but in the unloading direction. Since
the response is equivalent, the sense of deformation is irrelevant.
(c1) Another cell, probed at arate L = 0.1 uwm/s. (c2) Same cell
as cl but at L =1 um/s. (dl) Another cell, 0.1 um/s.
(d2) Same cell as d1, 1 wm/s. () Fit using Egs. (1)—(5) (black
curve) to the data shown in Fig. 4(b) (gray curve), with v = 8
and B = 0.24.
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FIG. 5. Loading and unloading for several rates L. (a) F as a
function of L/L, for a given cell, where L is the initial length.
Rates are: (1) 10 nm/s, 2) 30 nm/s, 3) 0.1 um/s, 4) 1 um/s.
The overstress AF is defined as the extent of relaxation after
unloading. (b) AF as a function of rate L for 7 different cells
(symbols). The curves are fits to Eq. (3).

[Figs. 2(b) and 5(a)]. To characterize this rate-dependence,
we define the overstress AF as the extent of force relaxa-
tion after unloading [Fig. 5(a)]. The overstress A F behaves
as log(dL/dr) approaching zero at a stretching rate of
about 10 nm/s [Fig. 5(b)]. The logarithmic trend does
not hold for AF < 100 nN. Characterization of this regime
is difficult due to the onset of erratic, active cell behavior.
From Figs. 4 and 5, we conclude: irreversibility requires
both large stretch amplitudes and stretch rates above
10 nm/s; for reversibility, either small amplitudes (below
10% stretch) or rates around 10 nm/s suffice.

Large amplitude stiffening after glutaraldehyde fixa-
tion.—We add glutaraldehyde 0.1% in order to prevent
slippage of cytoskeletal connections, a procedure named
fixation. The increasing slope of the curve labeled fixed in
Fig. 6(b) now reveals a stiffening response for continuing
stretch. The numerical derivative of the F(L) relation
obtained from fixed (hence dead) cells is the same as the
differential master-relation obtained from living fibroblasts
[Fig. 6(c), from Ref. [7]). This F(L) relation closely re-
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FIG. 6. (a) Controlled length L as a function of time. A single

loading cycle with amplitude 30% is performed. (b) Force F as a
function of length L. “Normal’’: before adding glutaraldehyde.
“Fixed”: in presence of glutaraldehyde 0.1%. The dotted line is
a fit to Eq. (2). (c) The derivative dF/dL of the fixed curve
(black line) plotted against the differential master-relation (gray
dots, as discussed in Ref. [7]).

sembles the exponential stress-stretch relations observed in
whole tissues [16,17].

Viscoplasticity.—We propose a minimal constitutive re-
lation for fibroblasts under uniaxial extension. We decom-
pose the measurable cell length L into inelastic zero-force
length ¥ and elastic stretch ratio,

L=\ (1)
The force is a function of the elastic strain,
F o (A — 1)e?W+2/A=3), )

where we use exponential elasticity [16], according to
Fig. 6(b) and 6(c). The flow rule relates the inelastic flow
rate ¥ to the overstress F — &. We obtain reasonable
agreement with experiments [Fig. 5(b)] using

L o sgn(F — F)( JD)BF-ID (3

with 8 = 0.1 — 0.5. The drag force D sets the scale where
the overstress induces the transition from elastic to inelas-
tic deformation [7]. The rest force §§ accounts for kine-
matic hardening [13,14]:

F-3

¥« L. 4)

For constant-rate loading the deformation becomes inelas-
tic, ¥ — L, as the overstress approaches a steady value
AF « D. Hence the drag force D defines the force-width
of the hysteresis of the inelastic response [Fig. 5(a)]. Since
the hysteresis loop broadens at high forces with increasing
F [Fig. 2(b)], D must increase roughly linearly with F.
That is, D behaves just like the differential elastic modulus
[Fig. 3(b), inset]. We therefore suggest

D (F) « dF/dA, (5)

which is equivalent to the relation between the loss and
storage moduli of the small amplitude response [7]. As
Figs. 3(b) and 4(e) show, the constitutive relation captures
the essence of the phenomenology quite well. Our descrip-
tion, however, produces a roughly logarithmic creep func-
tion rather than the observed power-law behavior [4,11].
Fluidization at fast inelastic strains [7] has yet to be con-
sidered. Active contraction and inelastic deformation at
slow rates require a more elaborate approach.
Discussion.—Our glutaraldehyde fixation experiments
elucidate that stress stiffening in fibroblasts [7] is due to
the nonlinear elasticity of the cytoskeleton, and is unrelated
to biological signaling or cytoskeletal restructuring. In
agreement with our results, very similar stiffening is
known from in vitro biopolymer networks [18]. To date
the precise microscopic mechanism remains unclear;
stretching [18,19] and bending [7,20] of single filaments
as well as filament alignment [21] have been proposed.
The stiffening elastic elements will dissipate their stored
energy upon bond rupture. In loading experiments at rela-
tively fast rates (from Fig. 5), the energy required to reach
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the inelastic regime is about 1 uN um =~ 2.5 X 103, T. It
has been shown for cells, that dissipation increases by
2 orders of magnitude with respect to bond energies [22].
Considering typical bond energies of about 10 kg7 [23]
and 100 nm for the mesh size [1], we estimate that 10°
bonds in a 10 wm cell, roughly 10% of the bonds, must be
ruptured before the cell enters the inelastic regime. As a
function of the force per bond f, dissociation rates are
known to increase as ~e//fo, where f, = 10 pN [24,25].
This provides a natural explanation for the logarithmic
overstress rate dependence in Fig. 5(b). With an actin
mesh size of 100 nm and about 10* load bearing filaments,
typical biological adhesion forces of 10 pN result in a drag
force D of about 100 nN, which is indeed the correct order
of magnitude. Interestingly, the inelastic stretch rate where
the logarithmic trend breaks down [Fig. 5(b)] is of the
order of 1073s7!, a typical rate for active cell processes
such as crawling and contraction [1,3]. Thus, spontaneous
bond dissociation may be what limits active phenomena to
long time scales [2].

A living cell must not yield within the physiological
“working range”’ of mechanical stress. Kinematic harden-
ing fulfills this requirement and confers stability to the cell;
upon a large stretch, weak spots in the cytoskeleton flowing
inelastically will increase their rest force % and eventually
stabilize. Rather than break at a given spot, the cell pro-
longs homogeneously along its length. This homogeneous
deformation may be behind the robust linearity of the
kinematic hardening response. The exact supramolecular
mechanism behind this unusual behavior in a soft system is
not known at this point. In cells, kinematic hardening may
result from a biochemical coupling between cell length and
myosin motor activity. However, the phenomenology is
known from passive systems such as composite alloys
[15] and granular materials [14]. There, the ‘““backstress”
(corresponding to our §¥) is a signature of internal stresses,
which increase as the inelastic flow leads to energy storage
in the mesostructure.

We have shown that, in uniaxial stretching experiments,
cell mechanical properties in the studied range of parame-
ters are reflected well by two simple relations: exponential
elasticity and viscoplastic linear kinematic hardening.
Given the cytoskeletal complexity, the simplicity of our
description is unexpected. A complete picture of passive
cell rheology down to molecular details seems in close
reach.
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