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The question of whether one should speak of a ‘‘pairing glue’’ in the Hubbard and t-J models is
basically a question about the dynamics of the pairing interaction. If the dynamics of the pairing
interaction arises from virtual states, whose energies correspond to the Mott gap, and give rise to the
exchange coupling J, the interaction is instantaneous on the relative time scales of interest. In this case,
while one might speak of an ‘‘instantaneous glue,’’ this interaction differs from the traditional picture of a
retarded pairing interaction. However, as we will show, the dominant contribution to the pairing
interaction for both of these models arises from energies reflecting the spectrum seen in the dynamic
spin susceptibility. In this case, the basic interaction is retarded, and one speaks of a spin-fluctuation glue
which mediates the d-wave pairing.
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The question of whether the pairing interaction in the
cuprate superconductors should be characterized as arising
from a ‘‘pairing glue’’ has recently been raised [1]. As we
will discuss, this is a question about the dynamics of the
pairing interaction, and it will be answered when we know
more about the frequency dependence of the cuprate super-
conducting gap. From the d-wave ( coskx � cosky) mo-
mentum dependence of the cuprate gap, we know that
the pairing interaction is spatially a short-range, domi-
nantly near-neighbor attraction. However, in spite of pio-
neering angle-resolved photoemission spectroscopy [2–6],
tunneling [7–9], and infrared conductivity [10,11] studies,
we do not yet have sufficient information to definitively
characterize its dynamics. Thus, while there is a growing
consensus that superconductivity in the high Tc cuprates
arises from strong short-range Coulomb interactions be-
tween electrons rather than the traditional electron-phonon
interaction, the precise nature of the pairing interaction
remains controversial.

This is the case even among those who agree that the
essential physics of the cuprates is contained in the
Hubbard and t-J models. For example, both Anderson’s
resonating-valence-bond (RVB) theory [12] and the spin-
fluctuation exchange theory [13–15] lead to a short-range
interaction which forms dx2�y2 pairs. However, the dynam-
ics of the two interactions differ. In the RVB picture, the
superconducting phase is envisioned as arising out of a
Mott liquid of singlet pairs. These pairs are bound by a
superexchange interaction J which is proportional to t2=U.
Here t is the effective hopping matrix element between
adjacent sites, andU is an on site Coulomb interaction. J is
determined by the virtual hopping of an electron of a given
spin to an adjacent site containing an electron with an
opposite spin [16]. Thus, the dynamics of J involves virtual
excitations above the Mott gap, which is set by U, and the

pairing interaction is essentially instantaneous. In this case,
as Anderson has noted [1], one should not speak of a
‘‘pairing glue’’ in the same sense that this term is used
when referring to a phonon-mediated interaction. In the
spin-fluctuation exchange picture, the pairing is viewed as
arising from the exchange of particle-hole spin fluctuations
whose dynamics reflect the frequency spectrum seen in
inelastic magnetic neutron scattering. This spectrum cov-
ers an energy range which is small compared with U or the
bare bandwidth 8t. In this case, the pairing interaction is
retarded, and, in analogy to the traditional phonon medi-
ated pairing, one says that the spin fluctuations provide the
pairing glue. So the question of whether there is a pairing
glue offers a way of distinguishing different pairing
mechanisms. Here by using numerical techniques we
show that the dominant contribution to the pairing inter-
action is associated with the spectral region characteristic
of the spin fluctuations. This suggests that the cuprate
dynamic spin susceptibility measured by inelastic neutron
scattering should be reflected in the frequency dependence
of the d-wave gap.

In the superconducting state, the Nambu self-energy
�̂�k;!� can be parametrized as

 �̂�k;!���1�Z�k;!��w�0�X�k;!��3���k;!��1: (1)

Here �0, �1, and �3 are the Pauli spin matrices, Z�k;!� and
X�k;!� describe the so-called normal components of the
self-energy, and the gap function ��k;!� describes the
anomalous part which contains information on the internal
structure of the pairs. The complex gap function��k;!� �
�1�k;!� � i�2�k;!� satisfies the Cauchy relation

 �1�k;!� �
1

�

Z 1
�1

�2�k;!0�
!0 �!

d!0; (2)

and, for ! � 0, one has
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 �1�k; 0� �
2

�

Z 1
0

�2�k;!0�
!0

dw0: (3)

Based upon this, a useful measure of the frequency depen-
dence of the pairing interaction [17] is

 I�k;�� �
2
�

R
�
0
�2�k;!0�
!0 d!0

�1�k; 0�
: (4)

It gives the fraction of the zero frequency gap function
which arises from frequencies below �. In order to obtain
some insight into I�k;��, we first consider the case of Pb.
Here the k dependence of the gap function is negligible,
and only the frequency dependence enters. The imaginary
part of the gap function �2�!�, determined from tunneling
data [18], is shown as the solid curve in Fig. 1. The dashed
curve shows �2F�!�. By using this result for �2�!� along
with the value of �1�! � 0�, we have evaluated I���. As
seen in Fig. 1(b), I��� increases as � passes through the
characteristic transverse and longitudinal Pb phonon fre-
quencies plus �0. It then exhibits a broad maximum and
settles down to a value that exceeds 1. The maximum arises
from the change in sign of �2�!� which occurs at a
frequency 2–3 times the characteristic frequencies of the
retarded part of the interaction. The reason that the asymp-
totic value of I��� exceeds unity is that the nonretarded
screened Coulomb pseudopotential leads to a negative,
frequency-independent, contribution �NR to the real part
of�1�!�. In this case, the Cauchy relation Eq. (2) becomes

 �1�! � 0� �
2

�

Z 1
0

�2�!
0�

!0
d!0 ��NR; (5)

and at high frequencies I��� exceeds 1 by the nonretarded
contribution ��NR=�1�0�.

The models that we will consider have a square two-
dimensional lattice with a near-neighbor one-electron hop-
ping t. The Hubbard model has an on site Coulomb inter-

action U, and its Hamiltonian is

 H � �t
X
hijis

�cyiscjs � c
y
jscis� �U

X
i

ni"ni# ��
X
is

nis; (6)

with � a chemical potential which sets the site filling hni.
Here c�is creates an electron of spin s on site i, and nis �
c�iscis is the site occupation number operator for spin s. The
t-J model is the large U limit of the Hubbard model in
which no double site occupancy is allowed and near-
neighbor spins are coupled by an exchange interaction J:

 H � �t
X
hijis

�~cyis~cjs � ~cjs~cis� � J
X
hiji

�
Si � Sj �

1

4
ninj

�
(7)

Here Si � ~cyis�ss0~cis0 , and ~cyis is a projected fermion opera-
tor defined as cyis�1� ni�s�.

Exact diagonalization calculations were carried out for
the t-J model on a square cluster of N � 32 sites. This
particular cluster exhibits the full local symmetries of the
underlying square lattice and has all of the most symmetric
k points in reciprocal space [19]. Here we will consider the
0-, 1-, and 2-hole sectors. One hole doped onto a 32-site
cluster corresponds to a doping x ’ 0:03.

The gap function��k;!� can be extracted by combining
Lanczos results for the one-electron Green’s function
G�k;!� and Gorkov’s off-diagonal Green’s function
[17,19]

 F�k;!� � �F�k;!� i�� � �F�k;!� i�� (8)

with

 

�F�k;z�� h�0�N�2�j~c�k;��
1

z�H�EN�1
~ck�j�0�N�i:

(9)

Here the number of electrons in the initial and final ground
states differ by 2, andEN�1 is defined asEN�1 � �E0�N� �
E0�N � 2��=2. For a finite cluster, the diagonal Green’s
function is defined as
 

G�k;!�� h�0�N�2�j~ck�
1

!� i��H�EN�1

	~c�k�j�0�N�2�i

�h�0�N�j~c�k�
1

!� i��H�EN�1
~ck�j�0�N�i:

(10)

With this definition, both G�k;!� and F�k;!� have the
same set of energy poles. By using a continued fraction
Lanczos-based method, both G�k;!� and F�k;!� have
been calculated and the gap function ��k;!� determined
from

 ��k;!� � �
F�k;!�

G�k;!�G�k;�!� � F2�k;!�
: (11)

Results for ��k;!� and I�k;�� for J=t � 0:3 and x
 3%
(N � 32), with k � �0; ��, are plotted in Fig. 2. We believe
that finite size effects are responsible for �2�k;!� starting

FIG. 1 (color online). (a) The imaginary part of the Pb gap
function �2�!� versus ! (solid curve). The peaks in �2�!�
occur at the transverse !T and longitudinal !L peaks of �2F�!�
(dashed curve) shifted up by the gap �0. (b) The pairing
interaction spectral weight I��� versus � for Pb. I��� increases
as � passes through !T ��0 and !L ��0 reflecting the
transverse and longitudinal phonon contributions to the pairing.
At larger values of �, I��� exceeds unity because �1�0� is
reduced from the value that it would have just due to the phonons
by the presence of the nonretarded screened Coulomb pseudo-
potential ��.
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out negatively and that the corresponding negative dip in
I�k;�� is an artifact. These negative values are almost
undetectable in earlier calculations on ladders for which
it is known that finite size effects are much smaller [17].
For J=t � 0:3, the rapid increase in I�k;�� as �=t exceeds

0:75 reflects the dynamic contributions of the spin fluc-
tuations, and the broad maximum arises from the negative
swing in �2�k;!� which occurs when ! exceeds several
times their spectral range. This is similar to the behavior
seen in Pb when ! exceeds the spectral range of �2F�!�.
At higher frequencies in Fig. 2(b), I��� is seen to decrease
below 1. This high frequency behavior in which I��� drops
below 1 is more clearly seen for J=t � 0:5, as shown by the
dashed curve in Fig. 2(b). The fact that at high frequency
I�k � �0; ��;�� lays below 1 means that there is a non-
retarded (instantaneous) contribution to the d-wave pairing
interaction. In contrast to the case of the traditional low
temperature superconductors, here the nonretarded contri-
bution increases the pairing, corresponding to a positive
value of �NR�k�=��k; 0�. Furthermore, its relative contri-
bution increases as J=t increases.

For the Hubbard model, one can explore the full dy-
namic range including the upper Hubbard band so that the
Cauchy relation does not have an additional constant term
�NR. To calculate ��k;!� for the Hubbard model, we have
used a dynamic cluster approximation (DCA) [20,21]. The
general idea of the DCA is to approximate the effects of
correlations in the bulk lattice with those on a finite size
cluster withNc sites and periodic boundary conditions. The
DCA maps the bulk (L	 L, with L!1) lattice problem
onto an effective periodic cluster embedded in a self-
consistent dynamic mean field that is designed to represent
the remaining degrees of freedom. The hybridization of the
cluster to the host accounts for fluctuations arising from
coupling between the cluster and the rest of the system.

Here we have used a noncrossing approximation (NCA)
[21,22] to determine ��kA;!� for a 4-site 2	 2 cluster at a
wave vector kA � �0; ��. This cluster allows for a gap with
d-wave symmetry and is such that within the noncrossing
approximation dynamic results can be obtained on the real
frequency axis. Similar calculations were performed for
the t-J model in Ref. [23].

In mean-field theories such as the DCA, the mean field
generates a constant real term �MF�kA�. In the infinite
cluster size limit, the DCA recovers the exact result, and
the mean-field contribution �MF�kA� vanishes. For a finite
cluster size, we therefore view this contribution as an
artifact and subtract it off of �1�kA;!� before performing
the analysis based on the Cauchy relation. �MF�kA� was
determined from lim!!1�1�kA;!�. The expression for
I��� becomes

 I�kA;�� �
2
�

R
�
0
�2�kA;!0�

!0 d!0

2
�

R
1
0
�2�kA;!0�

!0 d!0
�

2
�

R
�
0
�2�kA;!0�

!0 d!0

�1�kA; 0� ��MF�kA�
:

(12)

Results showing I�kA;�� versus � for a filling hni �
0:8 and various values of U=t are plotted in Fig. 3(a). The
d-wave projection of the dynamic spin susceptibility

 �00d��� �
h�cosk0x � cosk0y��00�k� k0;���coskx � cosky�i

h�coskx � cosky�2i

(13)
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FIG. 2 (color online). (a) The real (solid curve) and imaginary
(dashed curve) parts of �2�k;!� versus !=t obtained for a 32-
site cluster. Here k � �0; ��, J=t � 0:3, and the doping x ’ 3%.
(b) I�k;�� versus �=t for J=t � 0:3 (solid curve) and J=t � 0:5
(dashed curve) for k � �0; �� and x ’ 3%. Here a broadening
� � 0:05 was used for (a) and � � 0:005 for (b).
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FIG. 3 (color online). (a) I�kA;�� versus �=t for the 2	 2
DCA-NCA Hubbard calculation for T=Tc ’ 0:95, hni � 0:8, and
U=t � 8, 10, and 12. Here kA � �0; ��. (b) The d-wave pro-
jected �00d��� versus �=t for the same parameters.

PRL 100, 237001 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JUNE 2008

237001-3



was calculated for U=t � 10, and �00d��� is shown in
Fig. 3(b). These calculations are for a reduced temperature
T=Tc ’ 0:95, so the shift due to the magnitude of the gap at
the antinode ��kA� is negligible.

At low frequencies, I�kA;�� is seen to increase over the
spectral range associated with the spin-fluctuation re-
sponse seen in �00d�!�. As � exceeds this range, I�kA;��
passes through a weak maximum and dips down slightly,
similarly to the t-J results shown in Fig. 2(b). Then, on a
higher energy scale, I�kA;�� goes to 1. One sees that, as
U=t increases, the region over which I�kA;�� remains
below 1 extends to higher energies. For the t-J model
this energy was pushed to infinity, but for the Hubbard
model the high frequency contribution that takes I�kA;��
to 1 is associated with the upper Hubbard band.

These numerical results show that the d-wave pairing
interaction in the t-J and Hubbard models contain both
retarded and nonretarded contributions [24]. The retarded
contribution occurs on an energy scale which is small
compared to the bare bandwidth 8t and the on site
Coulomb interaction U. For the Hubbard model, the ‘‘non-
retarded’’ contribution occurs on an energy scale set by the
Mott gap and is related to excited states involving the upper
Hubbard band. For the t-J model, this energy scale is
pushed to infinity, and the exchange contribution is
instantaneous.

A simple phenomenological form for the d-wave pairing
interaction, consistent with these observations, is
 

Vd�k;!;k
0;!0�� 3

2
�U2��k�k0;!�!0�

� �J�coskx�cosky��cosk0x�cosk0y�: (14)

Here ��q;!� is the dynamic spin susceptibility, and �U and
�J are effective coupling constants. The retarded contribu-
tion to the pairing comes from the first term, and the non-
retarded contribution from the second, exchange, term.
Unlike the traditional low Tc case where the nonretarded
screened Coulomb interaction suppresses the gap, here the
nonretarded exchange term enhances the d-wave gap.

The question regarding whether there is a pairing glue is
then a question of whether the dominant contribution to
�1�kA;! � 0� comes from the integral of �2�kA;!�=!
[25]. From the results presented here, we conclude that
both the t-J and Hubbard models have spin-fluctuation
pairing glue. For the cuprate materials, the relative weight
of the retarded and nonretarded contributions to the pairing
interaction remains an open question. Thus, the continuing
experimental search for a pairing glue in the cuprates is
important and will play an essential role in determining the
origin of the high Tc pairing interaction.
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