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Within a MHD approach we find magnetic reconnection to progress in two entirely different ways. The
first is well known: the laminar Sweet-Parker process. But a second, completely different and chaotic
reconnection process is possible. This regime has properties of immediate practical relevance: (i) it is
much faster, developing on scales of the order of the Alfvén time, and (ii) the areas of reconnection
become distributed chaotically over a macroscopic region. The onset of the faster process is the formation
of closed-circulation patterns where the jets going out of the reconnection regions turn around and force
their way back in, carrying along copious amounts of magnetic flux.
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Reconnection is one of the most active areas of research
in plasma physics [1,2]. Reconnection is believed to be a
crucial engine of energy conversion in astrophysical ob-
jects such as the environment of black holes [3] and stars
[2] and in laboratory experiments [4]. In reconnection,
magnetic field lines break and reconnect changing their
topological connectivity [1] and in the process convert
magnetic energy into kinetic and thermal energy.
Explaining how reconnection can be an active agent for
energy exchanges in macroscopic systems requires ad-
dressing two fundamental problems.

The first problem is that the detailed study of reconnec-
tion leads to the conclusion that reconnection is a very
localized process developing in tiny regions (called diffu-
sion regions) within the overall system. However effective
such a localized process may be, still how can it affect large
fractions of the system energy? There is a need to explain
how a vast area of magnetic field and energy can undergo
such a process when it takes place on very small scales. A
suggestion [5,6] has been made that reconnection might
take place in large areas in the form of a cluster of many
diffusion regions filling a significant area of the domain.
This proposal is very attractive, but evidence for such a
process is still lacking, either as direct observational evi-
dence or as simulation demonstration.

A second difficulty is to achieve the required rate of
reconnection. Reconnection requires dissipative processes
usually not present in a simple description of the plasma
as a resistive fluid: the level of resistivity present in the
system is vastly insufficient to explain the observed rates.
Reconnection can be fast on the microscopic scales [7] or
when the process of reconnection is driven by flows [1]
(spontaneously generated in the system or created
externally).

We report here a possible mechanism capable of induc-
ing a turbulent (meant here simply to imply a chaotic
process) reconnection region encompassing a large scale
portion of a macroscopic system and where reconnection
aliments itself requiring no external flows to keep a fast
rate of reconnection.

Reference systems considered.—For simplicity we con-
sider two types of systems initially in a 1D equilibrium
state described either as a balance of magnetic and plasma
pressure (the so-called Harris sheet):

 B �z� � B0ftanh�z=L�; 0; 0g; p�z� � p0sech�z=L�;

(1)

or as a force-free equilibrium in a uniform plasma:

 B �z� � B0ftanh�z=L�; sech�z=L�; 0g; p�z� � p0:

(2)

To follow a now standard procedure that facilitates
comparison with previously published works, the evolution
of the system is initiated by an initial perturbation chosen
according to the so-called GEM challenge [7]: �Ay �
�B0L cos�2��x� Lx=2�=Lx� cos��z=Lz�, with � � 0:1.
We consider the 2D plane �x; z� 2 �0; Lx� �
��Lz=2; Lz=2� where reconnection develops.

The aim of the present Letter is to consider macroscopic
processes (on scales much larger than the ion inertial
length); therefore, the fluid MHD approach is appropriate,
compared with the kinetic approach valid at all scales but
relevant only at small scales below what is considered here.
We use the FLIP3D-MHD code [8], based on the viscoresis-
tive MHD equations and including an energy equation and
an ideal equation of state with adiabatic index � � 5=3.
The simulations reported below have different system sizes
(listed in each case) but all have grid spacing �x=L,
�z=L � 1=12 and time step �t=�A � 0:05 (with the
Alfvén time �A � L=vA). This level of accuracy results
in converged solutions, as tested by comparing simulations
with a time step or grid spacing increased separately by a
factor of 2. Periodic boundary conditions are used along x
to try to mimic similar events happening in nearby regions
of the system, as proposed in the mechanism suggested in
Ref. [6]. In z, the so-called no-slip conditions (i.e., no
parallel flow is allowed and the boundary is impermeable
to the plasma; the magnetic field remains parallel to the
wall) are used. This choice of the boundary conditions
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could impede the flow patterns that will be analyzed below,
reducing the rate of reconnection compared with an open
system. For this reason we have conducted simulations
with varying vertical box size (Lz � 40, 60, 80, 100,
120) and we have compared with open boundary condi-
tions (as in Ref. [9]). The results are not affected, qualita-
tively or quantitatively, proving that the boundary in z is far
enough from the reconnecting layer as not to affect the
evolution. Viscosity and resistivity are uniform and are
expressed via the Reynolds (R) and Lundquist (S) numbers
[1].

The evolution of the topology of the magnetic surfaces
and of the stream function is monitored. The intersection of
the magnetic surfaces in the plane of a 2D system are easily
obtained as contour lines of the component of the vector
potential along the ignorable direction (y in our choice of
coordinate system): Ay [1]. The stream function  is a fluid
quantity that plays a similar role for the streamlines that Ay
plays for the magnetic surfaces [1].

Two stage system evolution.—The system evolves in two
phases. Figure 1 shows the evolution of the reconnected
flux (i.e., the amount of magnetic flux that has passed
through the reconnection process) from its initial configu-
ration with only open field lines starting on one vertical
boundary and exiting the other to its final state with a new
topology including field lines connected to the same verti-
cal boundary at both ends (referred to as closed; see Fig. 2
below). The reconnected flux is eventually collected to-
wards the two ends of the system (x � 0, Lx) of the system
because of the choice of periodic boundary conditions and
of the initial perturbation (symmetric and strongest in the
center).

The reconnected flux (that causes the presence of the
new closed field lines) is measured as described in the
textbook procedure for 2D systems [1]: the out of plane
vector potential Ay is computed and on the mid axis (z �
0) its maximum and minimum are computed, their differ-
ence, initially zero, provides the amount of flux in the
closed field lines, caused by reconnection.

To show the robustness of the processes discussed,
different equilibria and dissipations are used. For both
types of equilibria, there is one slow reconnection phase
followed by a vastly faster process where almost all re-
connection happens.

The evolution shown in Fig. 1 presents clearly two
phases. At first, the flux is very slowly reconnected and
the details of the the growth (slope of the curve) and its
duration vary widely with viscosity and resistivity (mea-
sured by R and S). The second phase is much faster and is
rather insensitive to both viscosity and resistivity.

We focus here on the transition between the slow phase
and the fast phase showing that it is linked to the formation
of a self-feeding process where the fast flow out of the
reconnection regions is recycled into the inlet of the re-
connection region causing a feedback loop where the
reconnection process feeds on itself. Furthermore, we

show that the process is chaotic leading to multiple short
lived reconnection regions popping up randomly, fre-
quently and at multiple locations simultaneously. Even
though the process is dynamical and active with a continu-
ous creation and destruction of reconnection sites, the
overall rate remains remarkably steady: the reconnected
flux increases monotonically during the fast reconnection
phase shown in Fig. 1, despite the dynamical physics
behind it.

Each phase needs resistivity as its core dissipative
mechanism: in a complete kinetic description this feature
would change the details of the rate of reconnection in each
phase but the overall transition between the two phases is
not a process dependent on the presence of resistivity or on
its value. Similarly viscosity is not a key element. Let us
turn the attention now on this mechanism allowing the
transition from slow to fast reconnection.

Self-feeding and the nature of faster reconnection.—The
transition to the fast reconnection process is characterized
by the transition from a state where the outflow from a
single reconnection region remains localized near the cen-
tral horizontal axis of the system to a state where the
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FIG. 1. Reconnection rate for two types of equilibria. Note the
different vertical and horizontal scales in panel (a) and (b). Panel
a: Harris sheet, Eq. (1). Different horizontal system sizes are
used: Lx=L � 30, 60, 90, with the same vertical size (Lz=L �
120), viscosity (Reynolds number, R � 104) and resistivity
(Lundquist number, S � 104). Panel (b): Force-free, Eq. (2).
Different viscosity (Reynolds number, R) and resistivity
(Lundquist number, S) are used: R � 103, 104and S � 103,
104, for the same system size: Lx=L � 30, Lz=L � 40.
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outflow spills into the bulk of the system and forms a
circulation loop out of the reconnection region and directly
into it. Figure 2 shows the plasma circulation at different
times, as measured by the stream function of the plasma.
At the early time during the slow reconnection phase, the
jets from the one and only reconnection site caused by the
initial perturbation remains bound to the axis in the outflow
region. At the later time during fast reconnection, loops are
formed in the plasma flow that link the outflow with the
inflow to the reconnection region. The fast reconnection
process is accompanied by a direct circulation pattern
between the inlet and outlet of the reconnection sites. It
is as if a pipe was feeding the plasma exiting at fast speeds
from the reconnection region back into the inflow: but at
each passage, the flow brings in new magnetic field lines
that become decoupled with the plasma in the reconnection
region and contribute to the global reconnection on large
scales.

In the fast reconnection phase, the reconnection process
changes nature. The Sweet-Parker (SP) layer [2] present
during the slow phase of reconnection becomes destabi-
lized and multiple islands form. In between islands, x

points form where each reconnection site is driven by its
own self-feeding circulation pattern (as well as by neigh-
boring reconnection sites [10]). In the fast phase, the
reconnection process resembles more the x-point configu-
ration of driven reconnection than the y-point configuration
of spontaneous SP reconnection [2], thereby enabling the
faster rate.

In smaller systems (smaller than reported here), the
process described above is inhibited by the limited size
in the horizontal direction. Under those circumstances, the
SP layer may become unstable to secondary islands (as
reported in Ref. [11] for the so-called GEM challenge) but
the transition to the chaotic stage of reconnection is pos-
sible only in large macroscopic systems, as shown above.

The transition between slow and fast reconnection is
linked to the formation of these self-feeding circulation
patterns: during the slow phase the flows have not yet
formed the self-feeding patterns. The results support the
view that the formation of the circulation pattern precedes
the onset of faster reconnection. Figure 3 shows the mag-
netic topology and flow pattern at a time when reconnec-
tion is still progressing slowly. Clearly the pattern is
forming. The observation of subsequent frames (visible
in movies) shows the first formation of the self-feeding
loops during the slow phase, its subsequent strengthening
until eventually the reconnection rate takes off strongly.
There is a time interval when even though the speed of
reconnection has not increased yet, the circulation pattern
is already forming, thereby preceding the onset of faster
reconnection. This fact suggests (but does not prove) that
the circulation pattern is indeed the cause of fast reconnec-
tion and not one of its effects.

The destabilization of the outflowing jets from the lam-
inar reconnection phase and the formation of the self-
feeding loops is due to the interaction of the newly recon-
nected plasma with the magnetic flux already accumulated
in the outflow region. This process is more effective for
smaller systems where less room is available for the re-
connected flux. Indeed, as Lx=L is increased from 30 to 60
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FIG. 3 (color online). Magnetic topology and flow pattern
shown for the same case as in Fig. 2, but at a time right before
the start of the fast phase (t=�A � 150).
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FIG. 2 (color online). Magnetic topology and flow pattern at
two times: during the slow phase (a: t=�A � 100) and during the
fast phase (b: t=�A � 200). In red: intersection of the magnetic
surfaces with the plane of the simulation. In black: contours of
the stream function, corresponding to the circulation lines every-
where tangent to the flow speed. Results from the Harris equi-
librium run with Lx=L � 60, Lz=L � 120, R � 104 and
S � 104. Blow up around the central axis.
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to 90, the time to onset increases linearly. Furthermore, the
destabilization of the flows and the onset of faster recon-
nection is delayed if the outflow is impeded by dissipations
(lower R) or by the presence of an out of plane magnetic
field (as in the case of the initial force-free equilibrium)
that diverts part of the kinetic energy gained in the recon-
nection region towards the out of plane direction.

Multiplicity of reconnection sites.—The self-feeding
process described above is not steady: the islands are
continuously created and destroyed in a chaotic process.
Figure 2(b) shows a pattern of different reconnection re-
gions in proximity of different islands and self-feeding
circulation patterns each with its own size, some are
emerging others are dying off to be replaced continuously
by new ones. For comparison, the slow phase of reconnec-
tion [see Fig. 2(a)] has just one single long SP layer, a well-
known feature of slow laminar reconnection [2].

Figure 4 shows the space-time evolution of the magnetic
islands in the central horizontal plane of the simulation
with Lx � 60. Magnetic islands correspond to regions of
increased curvature of the out of plane component of the
vector potential: darker regions in the plot correspond to
regions of increased j@2Ay=@x2j. Other typical indicators
of reconnection (e.g. reconnection current or reconnection
electric field) lead to similar plots, not reported. Different
reconnection regions and different islands are continuously
created with a limited life span. At any given time, there is
the contemporary presence of multiple reconnection sites.
The reconnection process is very dynamical and chaotic,
even though the overall accounting of the amount of flux
processed by reconnection progresses steadily (as shown in
Fig. 1).

We point out two crucial differences of the chaotic
reconnection region, compared to previously considered
turbulent scenarios. First, the transition towards a turbulent
reconnection process is spontaneous and it is not initiated

by imposing turbulent fields or flows [12]. Second, the
chaos considered here is intrinsic of the fluid model
and bears no relationship with the microscale (kinetic)
turbulence embodied by the so-called anomalous resis-
tivity: here resistivity is fixed and uniform, the indepen-
dence of the rate of reconnection from resistivity is caused
by the mechanism produced by the self-feeding closed-
circulation loops.

Recapitulation.—Results are reported above using two
different types of equilibria: Harris and force-free equilib-
ria. In both cases the system given a standard initial per-
turbation goes through two stages. The first is the well-
known SP laminar reconnection [2] that crawls on the
resistive time scales. The second phase takes off at later
times, depending on the parameters and the initial equilib-
rium, and corresponds to a faster and turbulent reconnec-
tion process. The chaotic stage is anticipated by the
destabilization of the outflowing reconnection jets which
turn back towards the reconnection region and form a
conveyor-belt closed-circulation loop that carries quickly
new magnetic flux at the reconnection point where it
becomes decoupled from the flow and contributes to the
overall macroscopic reconnection process. The flow pat-
tern and the current layer become chaotic with recurrent
changes of number and locations of reconnecting points
and magnetic islands. The process of reconnection be-
comes fast as it is driven by the incoming flow due to the
self-feeding of the closed-circulation patterns.
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FIG. 4. Evolution in space (vertical axis) and time (horizontal
axis) of the magnetic islands. Results from the Harris run with
Lx=L � 60, Lz=L � 120, R � 104, and S � 104. Note that a
limited temporal span is shown.
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