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The nonlinear interaction of waves in a driven medium may lead to wave turbulence, a state such that
energy is transferred from large to small length scales. Here, wave turbulence is observed in experiments
on a vibrating plate. The frequency power spectra of the normal velocity of the plate may be rescaled on a
single curve, with power-law behaviors that are incompatible with the weak turbulence theory of Düring
et al. [Phys. Rev. Lett. 97, 025503 (2006)]. Alternative scenarios are suggested to account for this
discrepancy—in particular the occurrence of wave breaking at high frequencies. Finally, the statistics of
velocity increments do not display an intermittent behavior.

DOI: 10.1103/PhysRevLett.100.234504 PACS numbers: 47.27.Gs, 47.35.Jk, 62.30.+d

The statistical distribution of energy and energy fluxes
are central questions concerning out-of-equilibrium dissi-
pative systems with a large number of degrees of freedom.
When waves propagate in a medium, their nonlinear inter-
action might generate other waves with different wave
numbers, which means that energy is transferred between
different length scales. If the amplitude of waves is large
enough, this transfer leads to a distribution of energy on a
large number of wavelengths, and the system reaches a
state called wave turbulence [1], such that the energy
cascades between scales and might be dissipated on a small
scale. Although they share the same phenomenology, wave
turbulence is much more advanced analytically [1] than
hydrodynamic turbulence [2]. For waves of small ampli-
tude, the framework of weak turbulence yields kinetic
equations, the solutions of which have been derived start-
ing from the mid-1960s and correspond to energy spectra
with power-law dependence on the wave number. Wave
turbulence might apply to capillary [3,4] or gravity [5,6]
waves on the surface of liquids, to plasmas [7], to nonlinear
optics [8], to magnetohydrodynamics [9] or even to Bose-
Einstein condensates [10].

Experimental studies are much less numerous than theo-
retical ones; they were performed either on the oceano-
graphic scale—waves on a stormy sea (e.g., [11]), or on
the laboratory scale—capillary and gravity waves [12–
18]. Besides, the domain of validity of weak turbulence
theory is still a matter of debate. On the one hand, dis-
continuities in the slope of breaking waves result mathe-
matically in a wide energy spectrum [19,20], as apparently
observed for gravity waves [18]. On the other hand, weak
turbulence theory results in Gaussian statistics for the
waves, in contrast with experiments when bursts of intense
motion occur [13,17], a phenomenon known as intermit-
tency. In this context, the theoretical study in [21] is very
useful as it provides a new system, vibrating plates, where
wave turbulence could be observed.

Here we study experimentally a suspended plate driven
at high amplitudes [22]. We show that a wide energy
spectrum is generated, discuss its interpretation in terms
of weak turbulence and wave breaking, and investigate
whether the system is intermittent. The typical broadband
spectrum observed is also of special interest for its appli-
cations, e.g., for reproducing the sound of thunder in
theaters. It is also related to the bright shimmering sound
of gongs and cymbals [23,24]. Transition to chaotic vibra-
tion was studied for cymbals in [23], and for panels in
[25,26].

The experimental setup consists of a steel plate sus-
pended to a rigid frame and forced with a vibration gen-
erator (shaker B&K4810, glued to the plate with beeswax)
moving perpendicularly to the plate [Fig. 1(a)]. The plate
comes from a reverberation unit named EMT140, that was
widely used in studio recordings to add a reverberated
sound effect to dry signals recorded by near-field micro-
phones [27]. Hence, the plate was chosen for its very high
modal density, obtained by large dimensions 2 m� 1 m
for a thickness of h � 0:5 mm, as well as for the moderate
values of the quality factor, in order to get a fuzzy rever-
berated sound. Material properties were estimated as:
Young’s modulus E � 200 GPa, Poisson’s ratio � � 0:3
and mass per unit volume � � 7800 kg=m3. The plate is
fixed at its four corners, so that the boundary condition is
mainly free. The forcing is sinusoidal at fi � 20 Hz that is
close to a resonant frequency of the plate; it was chosen in
order to allow the best injection of energy in the system, so
that the turbulent regime is reached more easily. A laser
vibrometer gives the normal velocity v�t� at a given point
in the plate. The signal is acquired at the sampling fre-
quency of 32 kHz, and the fast-Fourier-transform (FFT) is
computed from 50 s of signal, averaged over time windows
of 0.5 s, so that �f � 2 Hz. A force sensor (impedance
head B&K 8001) is mounted between the shaker and the
plate. The simultaneous measurement of the velocity at the
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same point gives the average power I � hFvi injected by
the generator into the system (with 1 mW of accuracy).

For a bending wave of frequency f and wave number k,
the dispersion relation is

 f � hck2; with c �
��������������������������������
E=12��1� �2�

q
=2� (1)

proportional to the sound velocity in the bulk material. It
was checked in [27] that this dispersion relation indeed
holds in the present setup. It gives the space-time corre-
spondence of the statistical properties of the velocity sig-
nal, similarly to Taylor’s hypothesis for fully turbulent
flows [2], when fluctuations are not too large.

For very low forcing amplitude, the velocity signal v�t�
recorded by the vibrometer is sinusoidal. For higher am-
plitude, it becomes chaotic [Figs. 1(b) and 1(c)]. In the
frequency space, v�t� is characterized by its power spec-
trum Pv�f�, given by the Fourier transform of the autocor-
relation function, Pv�f� �

R
hv�t�v�t� ��i exp�2�if��d�.

This spectrum becomes broadband at high forcing
[Fig. 2(a)], which is typical of wave turbulence; however,
even with a long time averaging of the signal, Pv keeps a
number of peaks corresponding to the plate eigenfrequen-
cies. We checked homogeneity (by changing the excitation
and measurement points) and independence on boundary

conditions (by imposing fixed displacements at points at
the edge); these changes affected very slightly the power
spectra below the injection frequency.

As the forcing amplitude is increased, the spectra exhibit
a wider and wider power-law dependence on frequency,
Pv�f� � f�� with � � 0:5� 0:2 (this error is an upper
bound), which would correspond to the cascade regime. It
is followed by a fall which could correspond to the dis-
sipative scale. We seek the best rescaling of the spectra as a
function of the injected power I. This yields the scaling
form

 Pv�f� � �I=I0�
1=2��f=fc�; fc / fi�I=I0�

�: (2)

Here � a scaling function, I0 a unit of power and fc a cut-
off frequency. This rescaling enables to collapse the spectra
on a single curve [Fig. 2(b)]. The exponent for the depen-
dence of fc on I is found to be � � 0:33� 0:01 [Fig. 2(c)].
In the cascading frequency range, this implies Pv�f� �
I1=2���f�� � I0:66�0:07f�0:5�0:2.

In order to compare with previous theoretical work, we
first note that the power spectrum for the transverse dis-
placement � of the plate is given by P��f� / Pv�f�=f2.
When weak turbulence is attained, as investigated in [21],
the spatial power spectrum of the displacement can be
rewritten as P��k� / c�1	1=3k�4, introducing energy flux
	 per unit mass (	 has units of a velocity cubed and is
proportional to the power input I), and omitting numerical
prefactors and a logarithmic dependence on k. 	 is propor-
tional to the injected energy I. The 1=3 exponents for 	
comes from the �! �� symmetry of the plate, which
involves four waves interaction. The spectrum can be
translated into the frequency space P��k�kdk / P��f�df.
Using the dispersion relation (1), we get P��f� / h	1=3f�2

and Pv�f� / h	1=3 is constant. This dependence is signifi-
cantly weaker than in the measurements [Figs. 2(a) and
2(b)].

In the framework of weak turbulence, nonlinearities of
order p imply that Pv�f� scales as 	1=p [1]; the exponent
1=2 obtained for p � 2 is the closest to the measured
0:66� 0:07 (2). This value of p � 2 means three waves
interactions, a quadratic nonlinearity and no �! �� sym-
metry. Indeed, geometrical imperfections are unavoidable
in real plates, which is known to break this symmetry and
to produce quadratic nonlinearities [28]. Therefore, we
assume in the following that Pv�f� � 	1=2f�1=2, corre-
sponding to a displacement spectrum P��f� � 	1=2f�5=2.
This assumption allows to investigate the possible role of
damping in setting the cutoff frequency.

Indeed, we introduce the damping rate 
�f� � f�. The
spectrum of the energy per unit mass is E�f� / Pv�f� �
	1=2f�1=2. Let us consider the balance of energy over
the cascade frequency range; the in-flux is 	 while the
energy dissipated till fc � hckc is

R
kc 
�k�E�k�dk /R

fc 
�f�E�f�
�����������
hc=f

p
df. Balancing these two fluxes yields

fc � 	1=2�. For our setup, a fit to the damping coefficient
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FIG. 1 (color online). The experiment. (a) Setup with a steel
plate of dimensions 2 m� 1 m and thickness h � 0:5 mm;
close-up view of the fixation. (b), (c) time series of the local
transverse velocity measurements v�t� for the forcing frequency
fi � 20 Hz; duration of 10 times (b) and 1 time (c) the forcing
period.
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measured in [27] is shown in Fig. 3 in the frequency
domain of interest. It yields � ’ 1=2, so that fc � 	� I,
which is far from measurements (2) and so damping cannot
account for the cutoff.

A last option is that the wide energy spectrum might be
generated by singularities of the plate displacement as for
gravity waves [19]. For plates, wave breaking would be

replaced [21] by ridges [29,30] and d cones [31,32]. It was
shown in [20] that random independent slope discontinu-
ities result in a spectrum P��f� / �s�2f�4, �s being the
frequency of occurrence of slope discontinuities and � the
rms velocity impulse at each discontinuity. For the velocity
Pv�f� / �s�2f�2 which compares with the second part of
the spectra [Figs. 2(a) and 2(b)] over half a decade.
Besides, the jump should be given by the typical rms
velocity vrmsI1=2, so that we expect �� 	1=2. As a conse-
quence, the whole spectrum could result from a three
waves interaction for low frequencies, as suggested above,
and singularities for higher frequencies. These two spectra
match at a frequency f � fc such that 	1=2f�1=2 � 	f�2,
yielding f� 	1=3, which agrees with the scaling (2) as seen
in Fig. 2(c).

Finally, we consider the statistics of the velocity incre-
ments defined as ��v � v�t� �� � v�t�. The PDFs are
displayed in Fig. 4(a) for the large forcing amplitude. An
intermittent behavior of the velocity statistics would be
revealed by a change in the PDFs shape as the lag �
decreases [2]. Here we can see in Fig. 4(a) that the PDF
shape remains satisfactorily Gaussian whatever �. The
structure functions, Sp��� � hj��vjpi, are plotted in
Fig. 4(b). They are generally used to determine the scaling
behavior of the velocity differences statistics with the time-
lag � [2]. The structure functions start to decrease for � <
50 ms (i.e., the forcing period). For very small � < 0:3 ms
(i.e., the cutoff frequency), the velocity signal becomes
smooth and a simple scaling behavior Sp��� � �p is found.
For wave turbulence, the range of interest is comprised
between these two last extremes. However, within this
range no clear power laws are distinguishable in
Fig. 4(b). We then chose to plot the structure functions
versus S2��� in Fig. 4(c). This technique was used for fully
developed turbulence to measure anomalous scaling expo-
nent due to the intermittency phenomenon [33]. In our
case, the scaling exponents, defined as: Sp��� / S2����p ,
are indicated in Fig. 4(c) for each order moment p. There is
no significant deviation from �p � p=2, meaning that no
anomalous scaling is observable. Hence, wave turbulence
in plates does not exhibit any intermittency phenomenon.

To summarize, we observed a broadband spectrum in a
vibrating plate and investigated the variations of the cutoff
frequency. In this context, internal damping mechanisms
(mainly thermoelastic and viscoelastic losses for our plate
[27]) seem to be irrelevant. Losses at the edge [21] can be
discarded as the plate is fixed only at the corners. The
radiation of acoustic waves in air is negligible since the
frequencies of interest are well below the coincident fre-
quency, for which bending and acoustic waves have the
same phase velocity. The value of this frequency has been
measured as 20 kHz in our setup [27]. For thicker plates,
the coincident frequency may fall in the frequency range of
interest, thus leading to a huge increase of the damping
factor, see, e.g., [34]. This could affect the conclusions on
the cutoff. Our experimental results suggest a three-waves

FIG. 3 (color online). Damping factor for the present plate,
from [27].

FIG. 2 (color online). Power spectra of the transverse velocity.
(a) raw Pv�f� as a function of frequency f, for different values of
injected power I (in increasing order as displayed by the arrow:
<1 mW, 2.3, 8.8, 26.4, 68.8, 136 mW); errors �f � 2 Hz and
�Pv � 10�7 �mm=s�2=Hz. (b) Rescaled spectra �I0=I�Pv ac-
cording to Eq. (2) vs f=fc for all forcing amplitudes, where fc
is defined by �I0=I�1=2Pv�fc� � 10�5 mm2=s. Inset (c) evolution
of fc with the forcing intensity. The continuous line is the best
power law given in Eq. (2), yielding an exponent � � 0:33.
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spectrum matched to a spectrum of singularities where
dissipation occurs. Obviously they call for more theoretical
effort, in particular, concerning the weak turbulence of
plates with quadratic nonlinearities or the turbulence of
singularities.
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Trébuchet from Radio-France are also thanked for the loan
of the plate reverberator. This work was partially supported
by ANR Blanc OPADETO.

[1] V. E. Zakharov, V. S. Lvov, and G. Falkovisch,
Kolmogorov Spectra of Turbulence I: Wave Turbulence
(Springer-Verlag, Berlin, 1992).

[2] U. Frisch, Turbulence (Cambridge University Press,
Cambridge, England, 1995).

[3] V. E. Zakharov and N. N. Filonenko, J. Appl. Mech. Tech.
Phys. 4, 506 (1967).

[4] A. N. Pushkarev and V. E. Zakharov, Phys. Rev. Lett. 76,
3320 (1996).

[5] V. E. Zakharov and N. N. Filonenko, Sov. Phys. Dokl. 11,
881 (1967).

[6] M. Onorato, A. R. Osborne, M. Serio, D. Resio, A.
Pushkarev, V. E. Zakharov, and C. Brandini, Phys. Rev.
Lett. 89, 144501 (2002).

[7] S. L. Musher, A. M. Rubenchik, and V. E. Zhakarov, Phys.
Rep. 252, 177 (1995).

[8] S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E.
Zakharov, Physica (Amsterdam) 57D, 96 (1992).

[9] S. V. Nazarenko, A. C. Newell, and S. Galtier, Physica
(Amsterdam) 152–153D, 646 (2001).

[10] Y. Lvov, S. V. Nazarenko, and R. West, Physica
(Amsterdam) 184D, 333 (2003).

[11] M. A. Donelan, J. Hamilton, and W. H. Hui, Phil. Trans. R.
Soc. A 315, 509 (1985).

[12] R. G. Holt and E. H. Trinh, Phys. Rev. Lett. 77, 1274
(1996).

[13] W. B. Wright, R. Budakian, D. J. Pine, and S. J. Putterman,
Science 278, 1609 (1997).

[14] E. Henry, P. Alstrom, and M. T. Levinsen, Europhys. Lett.
52, 27 (2000).

[15] M. Y. Brazhnikov, G. V. Kolmakov, A. A. Levchenko, and
L. P. Mezhov-Deglin, Europhys. Lett. 58, 510 (2002).

[16] E. Falcon, C. Laroche, and S. Fauve, Phys. Rev. Lett. 98,
094503 (2007).

[17] E. Falcon, S. Fauve, and C. Laroche, Phys. Rev. Lett. 98,
154501 (2007).

[18] P. Denissenko, S. Lukaschuk, and S. Nazarenko, Phys.
Rev. Lett. 99, 014501 (2007).

[19] O. M. Phillips, J. Fluid Mech. 156, 505 (1985).
[20] E. A. Kuznetsov, JETP Lett. 80, 83 (2004).
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FIG. 4 (color online). Statistical properties of the velocity
increments ��v � v�t� �� � v�t� (injected power 136 mW).
Probability density functions compared to Gaussians in (a).
Structure functions of order p � 2, 3, 4, 5, 6, versus (b): the
time lag �, and (c): the order 2 structure function S2. Continuous
lines are best power laws fits with exponents �p (see text).
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