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Intermittency and Universality in Fully Developed Inviscid
and Weakly Compressible Turbulent Flows
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We perform high-resolution numerical simulations of homogenous and isotropic compressible turbu-
lence, with an average 3D Mach number close to 0.3. We study the statistical properties of intermittency
for velocity, density, and entropy. For the velocity field, which is the only quantity that can be compared to
the isotropic incompressible case, we find no statistical differences in its behavior in the inertial range due
either to the slight compressibility or to the different dissipative mechanism. For the density field, we find
evidence of ‘““frontlike” structures, although no shocks are produced by the simulation.
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Fully developed three-dimensional incompressible tur-
bulence is characterized by an intermittent energy flux
from large to small scales. According to the Kolmogorov
theory, the statistical properties of turbulence are scale
invariant within the inertial range n < r << L, where
L, is the scale of energy forcing, and 7 the dissipative
scale. Intermittency spoils dimensional scale invariance
and is the origin of anomalous scaling [1]. Few investiga-
tions have been reported so far for the case of weakly
compressible and inviscid turbulence, relevant to many
astrophysical and geophysical problems [2,3]. In this
Letter we present a high-resolution numerical simulation
of homogeneous and isotropic, 3D compressible and invis-
cid turbulence. Our main purpose is to investigate inter-
mittency in the inertial range and compare our finding
against known results for incompressible viscous turbu-
lence. For the case of driven and decaying supersonic
turbulence similar problems have been addressed in [4].
For this simulation, we use the FLASH 3 component-based
simulation framework. While the FLASH framework was
primarily designed to treat compressible, reactive flows
found in astrophysical environments [5], it is generally
applicable to many other types of fluid phenomena. For
this simulation, only the compressible hydrodynamics
module based on the higher-order Godunov piecewise
parabolic method (PPM) was used [6]. The algorithmic
methodology of the FLASH framework have been de-
scribed in further detail elsewhere [7]. The equation of
motions solved are the Euler equations for a fluid of density
p with forcing, F:
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v +V-(vvp) = —-VP+F, (2)
% + V- [v(pE + P)] =0, 3)

with the equation of state: P = (y — 1)pU and E = U +
1/2pv? and where P is the pressure, E the total energy, U
the internal energy, and 1 is the ratio of the specific heats in
the system. The effect of the large scale forcing F in (2)
gives rise to a turbulent flow whose energy is transferred
from scale L, towards small scales [7]. The energy input
[vF d*x produces an increase of the internal energy U,
which grows in time. There are two mechanisms of kinetic
energy dissipation. The most important is the energy trans-
fer from kinetic to heat via the compressible effects; the
second is a numerical smoothing of steep velocity and
density gradients tuned to filter out local numerical insta-
bility. The latter is important only at scales of the order of
the grid spacing [7]. The quantity [ dx3Pd,v; represents
the energy transfer from kinetic to internal energy of the
flow. The mean sound speed increases slightly in time as
well, though the 3D rms Mach number is roughly 0.3 (1D
Mach number 0.17) throughout. The numerical simulation
was done for isotropic and homogeneous forcing [8] with a
resolution of 18563 grid points. The integration in time was
done for 3 eddy turnover times after an initial transient
evolution beginning from rest. The numerical treatment of
turbulent flows used in the FLASH simulation is some-
times referred to as an implicit large eddy simulation
(ILES), to be distinguished from a full direct numerical
simulation (DNS) of the Navier-Stokes (NS) equations.
Thus, one might expect that the dynamics of the flow
may differ from incompressible and viscous high
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Reynolds number turbulence. A key question is therefore
whether the inertial range statistics differ significantly with
respect to the homogeneous and isotropic incompressible
case. To answer this question, we measure the scaling
properties of velocity fluctuations. In particular, we use
the method of extended self-similarity (ESS) [9], which
allows us to accurately estimate the anomalous exponents
of the longitudinal Sﬁ,L)(r) = ((6v(r) - F]?) (where
dv(r) = v(x + r) — v(x) and the average is over the vol-
ume and in time) and transverse structure functions
SD(r) = ((v(ry)]P) (where ry - v = 0). We denote the
corresponding scaling exponents by {,(L) and {,(T). Our
numerical result for £,(L), {,(T) agrees remarkably well
with previous data. This is shown in Fig. 1, which com-
pares the ESS local slope dlog(Sp(r))/dlog(S,(r)), for
both longitudinal and transverse structure functions p =
4 and p = 8 with the DNS simulations performed for
incompressible NS equation at comparable Reynolds num-
bers [10]. Figure 1 shows several interesting features. First,
there exists a range of scales (r/n = 50) where the local
slope is almost constant, i.e., where we can detect accu-
rately an anomalous scaling exponent. Second, as one can
see, in the inertial range our ILES results give exactly the
same anomalous scaling as that obtained for the incom-
pressible NS equation [10]. There is a clear difference
between our results and the NS case in the dissipation
range (r/m = 20), where the NS solutions show a well-
defined “dip” effect (as qualitatively predicted by the
multifractal theory [11]), while ILES behaves differently.
The different behavior in the dissipation range is expected
since the ILES does not dissipate energy in the standard
way. On the other hand, the remarkable agreement in the
inertial range allows us to claim that the inertial range
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FIG. 1 (color). Local slopes of the longitudinal and transverse
structure functions from the present ILES (thick lines) and
compared against a DNS [10] at comparable Reynolds (thin
lines). The normalization with respect to 7 is subjected to a
certain degree of arbitrariness, due to the fact that we can
estimate it only indirectly (see text).

properties are independent of the dissipation mechanism
[12]. This supports the conjecture that the statistical prop-
erties of turbulence in the inertial range are universal and
independent of the dissipation mechanisms. This is one of
our main results.

We also note that the difference between longitudinal
and transverse scaling exponents observed in homogene-
ous and isotropic DNS [10], is also seen in our numerical
results. This discrepancy is an open theoretical issue, not
explainable using standard symmetry argument in homo-
geneous and isotropic turbulence [13]. Whether this re-
mains true at higher Reynolds numbers is an open question
[14].

Although the integration is formally inviscid, there is a
net energy transfer from the turbulent kinetic energy
1/2pv? to the internal energy. Thus we may consider
that an effective viscosity v is acting on the system. In
order to estimate v.; we proceed as if the Kolmogorov
equation—with effective parameters—applies to our case:

SgL)(r) = —teqr+ 6veff%S(2L)(r) A fit of our data with
this formula gives, €. = 0.054, v = 8.3 X 107°, which

corresponds to a Kolmogorov scale, n = (v3;/ eif/ﬁ,

equivalent to roughly half grid cell and to R, ~ 600. The
amount of kinetic energy transferred to internal energy by
the term (@ - vP) is around 60%—-70% of the energy input
as given by the estimate of €. in the previous expression.
The dynamical effects of the effective viscosity are how-
ever different from what one usually observes in the NS
equations; i.e., the dissipation range does not behave the
same as in the NS solutions. In Fig. 2 we show the density
field in the system at a given time. One can easily recognize
the existence of large density gradients due to compressi-
bility. Another interesting quantity to look at is the entropy
S defined as S = log(P/p?). Using Egs. (1)—(3) one obtain
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FIG. 2 (color). 2D section of the density field p at a given
time: large regions with smooth density variations are separated
by sharp cliffs. Inset: probability density function of Mach
number
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the following equation for the entropy: 9,5 + v - VS = 0.
This equation tells us that S satisfies an evolution similar to
the case of a passive scalar advected by the velocity vector
v, although S cannot be considered passive here. Strong
variations are also detectable in the field S (not shown).
Recently, the statistical properties of density fluctuations
have been investigated for supersonic turbulence charac-
terized by large Mach number and a rather large effect is
due to the formation of shock waves and fronts [4,15]. In
our case, the 3D Mach number is of order 0.3 on average
and, consequently, we should expect that shock waves are
not important. In the inset of Fig. 2, we show the whole
probability density function (PDF) of Mach number distri-
bution for a given time during the temporal evolution. As
shown, the compressibility degree may reach a maximum
excursion where Mach ~O(1), indicating that compress-
ible effects cannot be however fully neglected in the flow.
Actually, it has been shown in experiments and direct
numerical simulations of scalar quantities, that frontlike
structures are frequently observed [16,17]. A frontlike
structure on a quantity O is characterized by a “local
scaling” property O(x + r) — O(x) ~ const for x + r and
x selected on the two different sides of the front. If these
“frontlike” structures play a significant role in the statis-
tical fluctuations of O, one should observe intermittent
anomalous scaling for the structure functions of O. In
particular the anomalous exponents should approach a
constant value for p — oo,

In order to study the statistical properties of the density
and entropy fluctuations, we can introduce the density
structure functions D ,(r) = {[6p(r)]’) and the entropy
structure functions E,(r) = ([6S5(r)]?). The ILES result
shows that Dp(r) and E,(r) are scaling functions of r in
the inertial range: i.e., D,(r) ~ r*» and E,(r) ~ r"». The
values of z, and h, are shown in the insert of Fig. 3
together with the compensated plot Dsr™% and Dgr=%.
From Fig. 3 one can appreciate the quality of the scaling in
the inertial range. We remark that the scaling exponents z,,
and h, show quite anomalous behavior. For p =3 the
values of z, are larger than the corresponding values of
{,(L) and {,(T) which means that density is in average
somehow smoother than the velocity field. The anomalous
exponents for both the density and the entropy structure
functions become constant at large order. In particular,
defining the saturation exponents to be z, and A, we
estimate 7, = 1.62 = 0.10 and A, = 1.00 = 0.10. A simi-
lar analysis for the pressure field (not shown) shows that
the structure functions of the pressure field P have the same
scaling exponents and of the same saturation exponents as
those for the density field.

In Fig. 4 we show the statistics of entropy and density
fluxes, defined as II,(r) = 8p(r)*(Suv(r) - #); Tlg(r) =
8S(r)?(v(r) - 7). In particular, in Fig. 4, panel (a) and
(b); we show the scaling exponents R(p), Q(p) defined
as (|I1,|P/3(r)) ~ rR@) and (|TLs|?/3(r)) ~ r2P), where we
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FIG. 3 (color). Compensated structure functions of the density
Dg(r)r—% (solid line) and D5(r)r~—%~ (dashed line). Inset: scaling
exponents of the density (@) and entropy (A) structure func-
tions. Errors include both statistical fluctuations and the uncer-
tainty in the fit to the inertial range.

have used the absolute value to improve the statistical
convergence. Both exponents are anomalous, and none
of them show the signature of a constant transfer of fluc-
tuations toward small scales, ie., R(3) # 1; Q3) # 1.
This implies that the phenomenology of density and en-
tropy transfer are significantly different from what ob-
served for passive scalar quantities in incompressible
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FIG. 4 (color). (a) scaling exponents of entropy flux,
(ITI4|?/3); (b) the same of panel (a) but for density flux
(11 pll’/ 3); (c) sixth order moment of density flux compensated
with velocity and density fluctuations, (IT,(r)*)/(S5(r)D4(r))
(circle) and the same quantity but for entropy flux (IT4(r)%)/
(SZ(r)E4(r)) (diamonds); (d) Rescaled probability distribution
function, P[8p(r)]r—%~. Different curves corresponds to differ-
ent values of r/n = 68, 112, 184, 288 in the inertial range.
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turbulence. In order to understand the correlation between
these two quantities and the advecting velocity field,
we show in panel (c) of Fig. 4 the compensated plot:
(T15(r))/ (S5 (N E4(r)) and (II7(r))/(S5(r)Dy(r)). Clearly,
both density and entropy become more and more corre-
lated with the velocity by going to small scales, with
density always more correlated than entropy. This confirms
the phenomenological idea that density fluctuations are
strongly constrained by the fluctuations of 9 - v at small
scales. The difference passive scalar advected by an in-
compressible velocity field is probably due to the presence
of extra terms proportional to the correlation between
density and velocity divergence in the equations governing
the scalar fluctuations.

According to the multifractal theory, the effect of satu-
ration in the exponents z, and %, is equivalent to saying
that the tail of the probability distribution P[8p(r)] should
behave as ~r% for any r. Thus we should expect that the
functions r~% P[8p(r)] should collapse on the same dis-
tribution for all r in the inertial range [16]. In panel (d) of
Fig. 4 we show that this is exactly the case for ILES result.
Let us note that, as shown in Fig. 3, z, is larger than /.
Using the multifractal theory, one can relate the saturation
exponent to the fractal dimension of the frontlike struc-
tures: i.e., D, = 3 — z, and Dg = 3 — hy. Our findings
show that Dy is larger than D, i.e., fronts in the entropy
field are easier to form compared to those in the density
field. This result may not be surprising if we observe that
large entropy fluctuations are produced by large pressure
or density fluctuations. The above argument implies that
entropy is a more intermittent quantity than density and
pressure. Entropy is a conserved quantity along Lagrangian
trajectories. This could suggest some connection between
the existence of frontlike structures and the behavior of
inertial particles in incompressible turbulence, where it is
known that particles tend to form multifractal sets with
correlation dimension as low as 2 [18,19].

Let us summarize our results. Using a numerical simu-
lation of inviscid homogeneous, isotropic weakly-
compressible turbulence, we find that the scaling properties
of the velocity field in the inertial range are in excellent
agreement with those observed in DNS of the NS equations
[10]. This result supports the statement that the nature of
the dissipation does not affect the statistical properties of
the inertial range; i.e., turbulence is universal with respect
to the dissipation mechanism. We confirm that transverse
and longitudinal structure functions show different scaling
properties (up to this Reynolds number). We have also
shown that, although almost no shock waves are produced
in the simulation, the density fluctuations are characterized
by frontlike structures. Accordingly, the scaling exponents
of density and entropy structure functions, D, and E,
saturate at large p.

The presence of frontlike structures as in passive scalars
advected by incompressible flows [16,17], is not neces-
sarily a signature of a passivelike behavior, as for instance
shown by the fluctuations of the velocity field in Burgers’
equations. Universality of the density and entropy fluctua-
tions at changing the Mach number, is not expected. In
particular, for supersonic flows, the probability to observe
fronts (or shocks) becomes larger and more correlated with
the velocity fluctuations. Therefore, exponents may satu-
rate at different values for large orders, as seen for the
scaling properties of the entropy in [4].
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