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When a liquid drop contacts a wettable surface, the liquid spreads over the solid to minimize the total
surface energy. The first moments of spreading tend to be rapid. For example, a millimeter-sized water
droplet will wet an area having the same diameter as the drop within a millisecond. For perfectly wetting
systems, this spreading is inertially dominated. Here we identify that even in the presence of a contact line,
the initial wetting is dominated by inertia rather than viscosity. We find that the spreading radius follows a
power-law scaling in time where the exponent depends on the equilibrium contact angle. We propose a
model, consistent with the experimental results, in which the surface spreading is regulated by the
generation of capillary waves.
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The spontaneous, capillary-driven spreading that results
when a liquid drop contacts a solid surface forms the basis
of many technological processes such as printing, coating,
and adhesion [1]. Biological systems have also evolved to
exploit spontaneous spreading; for instance, the secretion
of a wetting liquid between the pretarsal pads of some in-
sects helps them to adhere rapidly to surfaces [2,3]. Be-
cause of the ubiquity of spreading, it has been studied for
over a century [4,5]. Yet, with the advent of ultrafast cam-
eras, the first moments of spreading are now experimen-
tally accessible [6–10], which is crucial to understanding
rapid adhesion as it occurs in both technology and in
nature.

When a drop contacts a perfectly wetting solid (equilib-
rium contact angle, �eq � 0�), the initial dynamics are
nearly identical to a drop coalescing with a wet film [9].
Such similarities between perfect wetting and coalescence
are expected due to the presence of precursor films [5,9]. In
both systems, spreading follows a power-law behavior that
depends on the type of force resisting drop deformation.
When inertia resists deformation, the spreading radius r�t�
scales as �R�=��1=4t1=2, where R is the drop radius, � is the
surface tension, � is the fluid density, and t is time
[6,7,9,11]. On the other hand, in coalescence, when viscous
effects resist deformation, the spreading radius changes ac-
cording to r�t� / �t=�, where � is the dynamic viscosity
of the drop, and there is a weak logarithmic dependence on
time [8,11]. We are unaware of a study of the correspond-
ing short-time viscous dynamics on a perfectly wetting
surface.

Here, we focus on the early stages of partial wetting,
�eq > 0�, for which fundamental questions remain [12,13].
In this case, there are three different interfaces that inter-
sect to form a contact line. When spreading occurs under
partial wetting conditions, it is unknown whether the pres-
ence of a contact line prevents the occurrence of an inertial
regime. Specifically, due to the divergence of viscous
stresses at the contact line [14], viscous dissipation might
be expected to be the dominant resistance to spreading.

The only study that we have found that investigates early-
time spreading on partially wetting surfaces does not ad-
dress this issue [10]. The goal of this Letter is to investigate
whether the inertial spreading observed for perfectly wet-
ting fluids is also observed for the partial wetting regime.
The observations that we report here show that the spread-
ing dynamics for low equilibrium contact angles (�eq <
10�) behaves similarly to that of a perfectly wetting fluid.
However, for larger equilibrium contact angles, while the
spreading is still regulated by inertia, the dynamics follow
different power-law scalings which vary systematically
with �eq.

The first step in our experiments was to prepare sur-
faces of variable wettability using a variety of coatings
(Table I). Smooth silicon wafers were cleaned and coated
following a standard silanization procedure [5]. Experi-
ments were conducted for three deionized water-glycerol
mixtures with volume proportions 100=0, 60=40, and
40=60. At 20 �C, the mixtures have reported viscosities
of 1.0, 3.7, and 10.7 cP, respectively [15], which agreed
with measurements we obtained using a double-
Couette cell on a TA-ARG2 rheometer. The equilibrium

TABLE I. The equilibrium contact angle between the liquid,
air, and substrate is modified by the type of silane used.

Surface �eq �eq �eq

Wt. % glycerol 0 40 60
1. Thin liquid layer 0 0 0
2. Silicon dioxide 3 7 3
3. N-(3-triethoxysilypropyl)gluconamide 8 15 17
4. 3-Aminopropyltriethoxysilane 18 22 11
5. Acetoxyethyltriethoxysilane 38 37 32
6. Benzyltriethoxysilane 38 41 38
7. n-Octyltriethoxysilane 21 47 46
8. Triethoxysilybutraldehyde 43 44 47
9. (Heptadecafluoro-1,1,2,2-tetra-

hydrodecyl)triethoxysilane
117 99 110

10. Soot 180 180 180
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contact angles for these solutions with each substrate
were measured from photographs and are reported in
Table I.

For each trial, the appropriately coated silicon wafer is
placed on a flat surface under a 600 �m diameter needle,
through which liquid is injected quasistatically to create a
nearly spherical drop (Fig. 1). Once the drop diameter
equals the height of the needle, approximately 1 mm, the
drop contacts the surface and spreads. The spreading dy-
namics are captured at 67 000 frames per second using a
Phantom V7 camera. Image processing and the corre-
sponding data analysis are accomplished using custom-
made MATLAB algorithms. Contact (t � 0) corresponds to
the frame before any visual changes are observed; this can
occur a few frames before changes in the contact radius are
measurable. Given the frame rate, our uncertainty in the
start time is 15 �s for each trial.

The effect of surface chemistry on the shape of the drop
as it spreads is shown in Fig. 1, which illustrates results for
�eq � 3�, 43�, 117�, 180�. When a drop of water contacts
the hydrophilic surface �eq � 3� (Fig. 1 top row), the
liquid near the surface spreads faster than that above it,
and thus almost immediately an acute dynamic contact
angle �D < 90� is formed. By contrast, when a drop of

water contacts the hydrophobic surface (�eq � 117� in
Fig. 1), spreading occurs more slowly, and thus the drop
maintains an obtuse dynamic contact angle, �D > 90�,
throughout the spreading. We note that there is a transition
to �D � 90� when �eq � 43� (Fig. 1, second row).

In order to quantify the effects of wetting properties on
the dynamics, we measured the spreading radius r�t� dur-
ing the initial stages of wetting for drops that ranged from
0.2–0.8 mm in radius. The results for drops on the four
surfaces in Fig. 1 are shown in Fig. 2(a), which illustrates
that drops spread faster on the hydrophilic surfaces than
they do on the hydrophobic surfaces. We also observe that
for each substrate, larger drops spread faster than smaller
drops. By dimensional analysis, we know that in an iner-
tially dominated case, r

R � f� t������������
�R3=��
p ; �eq�, where f�� is

some function. When our experimental data are nondimen-
sionalized by this inertial scaling, all the trials collapse
onto four master curves, one for each �eq [Fig. 2(b)]. If the
dominant balance in the system was solely between capil-
larity and viscosity, then dimensional analysis predicts r

R �

f1�
t

�R=� ; �eq�. We confirmed that the viscous scaling does
not provide any collapse of the data, and thus the collapse
in Fig. 2 shows that the initial stages of wetting are iner-
tially dominated.

A log-log plot of the same data reveals that the position
of the contact line, r�t�, follows a power-law growth. Less
significance should be placed on our data below dimen-
sionless times of 0.1 due to the spatial accuracy of our
measurements. Each of the curves in Fig. 3, corresponding
to a distinct �eq, has a power-law exponent and prefactor,

i.e., r=R � C�t=��� where � �
���������������
�R3=�

p
. We determined

C and � for drops of three viscosities spreading on the ten
different surfaces (see Table I) by fitting the data. The
results are plotted in Fig. 4. As we now discuss, the effect
of partial wetting is evident in the prefactor of the scaling
law; more surprisingly, it also affects the exponent. We find
that for low equilibrium contact angles, � � 1=2, as was
previously observed [9]. However, Fig. 3 demonstrates a
monotonic decrease in the power-law exponent as the
equilibrium contact angle increases. The coefficient C is
of order one and also decreases for increasing contact
angle. No visible spreading was observed on the soot
surface (�eq � 180�), so the prefactor C was set to zero,
and we were unable to report a value of �.

The power law r=R � C�t=��� can be written as r �
C��t=���R1�3�=2. By varying t and R independently, we
can obtain two independent measures of �. We carried out
this secondary analysis for the three surfaces for which we
varied the drop radius. The resulting points are reported in
Fig. 4. Both approaches agree within experimental
accuracy.

The log-log plot of the data for the spreading radius
(Fig. 3) demonstrates two other points that we find note-
worthy. First, we see a distinct change in exponent when
the dimensionless time has a value between 2 and 3. This

FIG. 1. When water drops (here, R � 0:82� 0:01 mm) con-
tact a surface (dotted line), the distance r that they spread during
the first millisecond depends on the equilibrium contact angle
�eq of the liquid on the surface. Here, water drops spread on
surfaces 2, 8, 9, and 10 in Table I. It is clear that the surface
chemistry has an effect on the drop shape during this sponta-
neous spreading.
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kink corresponds to the previously studied transition from
inertial to viscous spreading [9]. Here, we observe that the
time when this transition occurs is approximately indepen-
dent of contact angle, and note that the inertial regime lasts
for approximately as long as the capillary wave, generated
at contact, takes to propagate over the drop. Surface ten-
sion will continue to drive spreading in the viscous regime
until the drops reach their equilibrium shapes, which for
the given contact angles (3�, 43�, 117�, 180�) correspond
to spherical caps with radii r=R � 33, 2.4, 1.0, and 0,
respectively. The second noteworthy feature of Fig. 3 is
that the times at which the power-law responses commence
appear to radiate from a single point. This observation
suggests the possibility that either contact occurs at a finite
radius [7] or that there is an even shorter time-spreading
mechanism that does not depend on contact angle, e.g.,
[16]. Only after the spreading radius grows to about a tenth

of the drop diameter do the effects of partial wetting begin
to appear.

The continuous dependence of the power-law exponent
on the wetting properties (Fig. 4) is surprising. We are not
able, at this time, to give a detailed analytical solution to
this spreading problem; however, we propose a scaling
analysis that can account for the contact angle-dependent
spreading exponent.

Previous studies hypothesize that the early-time dynam-
ics of inertial spreading is driven by an interface curvature
proportional to R=r2. When this curvature is regulated by
the acceleration of liquid near the centerline of the drop,
the resulting spreading radius scales as t1=2 [6,7,9,11]. We
are unable to modify this argument to account for the

FIG. 4. The spreading dynamics can be fit to a power law,
r=R � C�t=���. As the equilibrium contact angle, �eq increases,
both the coefficient C and the exponent � decrease. The symbols
represent the viscosity of the water-glycerol mixture—1.0 cP
(�), 3.7 cP (�), and 10.7 cP (�). The exponents derived using
the secondary analysis described in the text (	) follow a similar
trend. The uncertainly of when the drop contacts the substrate
leads to an absolute error in the power-law exponents of ap-
proximately 5%.

FIG. 3. Average of all trials for each of the four surfaces in
Fig. 2. The normalized contact radius, r=R, shows a power-law
spreading response where the exponent depends on the equilib-
rium contact angle �eq. The 95% confidence interval of the mean
(two standard errors) is shown by the vertical lines. No error bars
are depicted for �eq � 180� as only one trial was recorded.

FIG. 2. Evidence of inertial wetting. (a) The spreading radius r is plotted at various times t for different sized drops (symbol shape)
on each of the four surfaces in Fig. 1 (symbol shading). (b) Rescaling the plot by the drop radius R and a characteristic inertial time
scale; the data collapses onto four master curves, each corresponding to a different equilibrium contact angle. A reduced data set is
shown for clarity.
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partial wetting response (Fig. 1) and accommodate a con-
tact angle-dependent exponent. An alternative approach is
that spreading results from a rearrangement of liquid near
the droplet surface with the motion in the interior playing a
subdominant role. In other words, the generation and
propagation of the capillary wave initiated at the contact
line may be the rate limiting process. A two-dimensional
planar version of these dynamics has been considered
using potential flow theory [17] and leads to an exponent
of 2=3, irrespective of �eq. In fact, a number of theoretical
studies in planar as well as axisymmetric geometries pre-
dict power-law exponents of 2=3 for situations involving
self-similar generation of capillary waves [17–19]. We
postulate a different extension of these ideas to our experi-
ments, which leads to a power law for the spreading radius
with the exponent depending continuously on �eq.

To understand these ideas semi-quantitatively, consider
the combined surface and kinetic energy, which is con-
served in the absence of viscous dissipation,

 

Z
V

1

2
�juj2dV � �
A�0� � A�t� � �r�t�2 cos�eq�: (1)

Here, u�x; t� is the velocity field as a function of position x
and time, and A�t� is the surface area of the liquid-vapor
interface. Immediately after contact, we expect self-similar
dynamics to ensue [17], justifying the power-law behavior.
By estimating the magnitudes of the two sides of (1), we
extract the power law.

The images of the drop spreading in Fig. 1 suggest that
the region of deformation grows at the speed of capillary
waves. We assume a self-similar velocity field to vary over
the length ‘ci / ��t2=��1=3 [17], near the contact line, with
the magnitude of the velocity field determined by the
contact line speed u / dr=dt. We also expect that the
amplitude of the traveling wave to scale as the spread-
ing radius, r. As a result, the change in the surface area of
the spreading drop scales as r2, i.e., A�0� � A�t� �
�F��eq�r�t�2, for some undetermined function F.

Substituting into (1), we find that the spreading radius
satisfies the equidimensional equation

 

t
r

dr
dt
/

���������������������������������
F��eq� � cos�eq

q
: (2)

The nondimensionalized solution to this equation is
r=R � C�t=��� where � � C1

���������������������������������
F��eq� � cos�eq

q
, C1 being

a proportionality constant in (2). Thus, consistent with the
experimental observations, the scaling exponent, �, de-
pends only on the equilibrium contact angle, but not on
any other physical parameters. Additionally, this exponent
predicts the basic trend in the data (Fig. 4) provided that the
unknown function F only weakly depends on �eq. For
�eq � 0, we find no predisposition for or against the ob-
served value � � 1=2. A resolution of this issue requires a
more detailed theory.

In summary, we find that early-time inertially dominated
wetting extends beyond perfectly wetting situations and

into the spreading of partially wetting fluids. The experi-
ments clearly demonstrate that the surface chemistry and
size of the drop are important in the initial spreading
dynamics, whereas the fluid viscosity is not. The spreading
rate exhibits a power-law-like behavior whose exponent
depends on the equilibrium contact angle. Similar results
were also obtained when a silanized glass slide was sub-
stituted for the silicon wafer. While we currently lack a
detailed theory to rationalize these results, we have offered
an explanation at the level of a scaling law, with the
important idea being the propagation of capillary waves.
This finding is relevant to biological and nonbiological
coating processes, particularly in determining initial tran-
sients in rapid adhesion.
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