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We propose a design of coupling for stable synchronization and antisynchronization in chaotic systems
under parameter mismatch. The antisynchronization is independent of the specific symmetry (reflection
symmetry, axial symmetry, or other) of a dynamical system. In the synchronization regimes, we achieve
amplification (attenuation) of a chaotic driver in a response oscillator. Numerical examples of a Lorenz
system, Rössler oscillator, and Sprott system are presented. Experimental evidence is shown using an
electronic version of the Sprott system.
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Applications of chaos synchronization are being ex-
plored in secure communication [1] and nano-oscillators
[2] and for understanding neurocomputing [3] and cogni-
tive dysfunction in the brain [4], which are based on either
complete synchronization (CS) [5] or phase synchroniza-
tion (PS) [6]. CS is observed in identical systems under
strong interactions, yet its stability is susceptible [7] to
parameter mismatch and noise. In the presence of parame-
ter mismatch, PS is observed in chaotic systems [6] under
weak interactions above a threshold when the amplitudes
remain almost uncorrelated. PS can be of the in-phase
(zero-phase difference) or the antiphase (�-phase differ-
ence) type. A type of antiphase synchronization is anti-
synchronization (AS) [8–11], where the oscillators have
identical amplitudes, too.

Establishing CS or AS in chaotic oscillators under pa-
rameter mismatch is a challenging task. But it is important
for engineering applications since no two oscillators can be
identical in reality. Existing coupling schemes [6,7] failed
to preserve the stability of synchronization under parame-
ter mismatch. New coupling strategies need to be formu-
lated to address this issue of stability. We explore, in this
Letter, an open-loop–closed-loop (OPCL) based coupling
scheme [12] that ensures stable CS and AS in the presence
of mismatch.

AS is usually observed [8–10] in reflection symmetric
systems that remain invariant under the inversion
�x; y; z� ! ��x;�y;�z� of the state variables, while an
axial symmetric system such as a Lorenz oscillator is
invariant under a transformation �x; y; z� ! ��x;�y; z�,
where only partial AS [9,10] is observed using the conven-
tional linear coupling. In partial AS, some of the state
variables are in AS while the others are in CS. On the
other hand, in a Rössler oscillator, none of the above
symmetries exist, and AS is not observed. By using the
OPCL coupling, we provide counterintuitive examples that
reveal AS in all such systems without restrictions on the
symmetry class of a dynamical system.

Most importantly, in the synchronization regimes, we
are able to amplify (attenuate) a chaotic attractor in a

response system. Amplification (attenuation) of a chaotic
attractor was reported earlier [13] using the master-slave
coupling [5]. There the amplification of the chaotic attrac-
tor of a Lorenz system was shown in a replica of its
subsystem as a response system, when the drive and the
response develop a state of uniformly stable synchrony
[13]. However, the amplification was uncertain to achieve
since it was found to be sensitive to initial conditions and
perturbation. In contrast, we realize stable amplification
(attenuation) in any coupled chaotic system, identical as
well as mismatched, using our proposed coupling. We
focus our attention here on AS and amplification using
numerical examples of a Lorenz system, a Rössler oscil-
lator, and a Sprott system [14]. We demonstrate a physical
realization of the coupling in electronic circuit.

The OPCL coupling was used earlier for CS in identical
oscillators [12] and synchronization of identical complex
networks [15]. To extend the coupling to mismatch sys-
tems, we define a driver _y � F�y� � �F�y�, y 2 Rn, where
�F�y� contains mismatch parameters. It drives a response
system _x � F�x�, x 2 Rn, to achieve a goal dynamics
g�t� � �y�t�; � is a constant. The driven system is given
by

 

_x � F�x� �D�x; �y�; (1)

where the coupling D�x; �y� is defined by

 D�x; �y� � � _y� F��y� � �H � JF��y���x� �y�: (2)

J � @=@��y� is the Jacobian, andH is an arbitrary constant
Hurwitz matrix (nxn) whose eigenvalues all have negative
real parts. The error signal of the coupled system is defined
by e � x� �y, and F�x� can be written, using the Taylor
series expansion, by

 F�x� � F��y� � JF��y��x� �y� � � � � : (3)

Keeping the first order terms in (3) and substituting in (2),
the error dynamics is obtained as _e � He from (1), and this
ensures that e! 0 [12]. When �JF��y��ij in (2) is a
constant, we choose Hij such that �H � JF��y��ij is
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zero. However, if �JF��y��ij is a variable, we chooseHij �

pij. The parameters pij are chosen to satisfy the Routh-
Hurwitz (RH) conditions. For n � 3, the characteristic
equation of the H matrix is given by �3 � a1�

2 � a2��
a3 � 0, and the corresponding RH conditions are a1 > 0,
a1a2-a3 > 0, a3 > 0 [12]. This ensures stability of syn-
chronization even in mismatch oscillators. � can now be
used as a control parameter to induce flip-flopping between
CS (� � 1) and AS (� � �1) states, which is of practical
use in digital encoding [16].

The coupling scheme is first elaborated by using a
numerical example of the Lorenz system

 _x 1 � ��x2 � x1�; _x2 � rx1 � x2 � x1x3;

_x3 � �bx3 � x1x2:
(4)

We consider another Lorenz system with mismatch
 

_y1 � ��y2 � y1� � ���y2 � y1�;

_y2 � ry1 � y2 � y1y3 � �ry1;

_y3 � �by3 � y1y2 ��by3;

(5)

where ��, �r, and �b are the mismatches in parameters.
The system (5) drives the response (4) for replication or
amplification of its dynamics. The coupling is derived by
using (2), and then by adding to (4) the driven Lorenz
system is
 

_x1���x2�x1������1="��y2�y1�;

_x2� rx1�x2�x1x3���ry1�����1�y1y3

��p1��y3��x1��y1���p2��y1��x3��y3�;

_x3��bx3�x1x2���by3���1���y1y2

��p3��y2��x1��y1���p4��y1��x2��y2�: (6)

Clearly, the coupling has nonlinear components with addi-
tional linear coupling terms, one for each mismatch. " is a
tuning parameter inserted deliberately in (6) to test how the
coupling term due to a mismatch (��) plays an effective
role in stabilizing synchronization as elaborated later. Note
that " � 1 for the current simulation. The Hurwitz matrix
H (3	 3) for the driven Lorenz system is H �
j � � � 0; r� p1 � 1 p2;p3 p4 � bj

T ; T denotes trans-
pose of a matrix. The coupling in (6) can be simplified by
appropriate choices of pk (k � 1; 2; 3; 4) in H. A suitable
choice is p1 < 1� r, p2 � 0, p3 � 0, and p4 � 0 [12],
where p1 decides the rate of achieving synchronization. p1

is selected as p1 � �30< 1� r for the current simula-
tion. For further reduction in coupling complexity, we
choose the driver as identical to the response except r�
�r � 38. The mismatch is thereby limited to �r � 10,
when �� � 0 and �b � 0. Numerical results of the
coupled Lorenz system (5) and (6) are shown in Fig. 1.
The response variables (xi, i � 1; 2; 3) as solid lines and
twice the driver variables (yi) as dashed lines are plotted in
the upper row. All of the time series are identical in

amplitude but opposite in phase. This rules out the earlier
claim [8–10] that �x1; y1� and �x2; y2� can attain only AS
while �x3; y3� can be in CS. A plot of E � �x1 � 2y1� in the
lower left panel shows a constant value at zero with time
that confirms an amplification of the driver by a factor of 2
as expected for� � �2. The response attractor in Fig. 2(b)
is a larger and inverted version of the driver in Fig. 2(a).
The amplification is also realizable in the CS regime by
simply taking � � 2 as shown in the lower right plot of
Fig. 1. Similarly, attenuation can be observed by taking
0< j�j< 1.

We consider the Rössler system as a second example:

 _x 1��!x2�x3; _x2�x1�bx2; _x3�c�x3�x1�d�:

(7)

The driver oscillator with a mismatch is defined by
 

_y1 � �!y2 � y3 ��!y2; _y2 � y1 � by2 � �by2;

_y3 � c� y3�y1 � d� � �c� �dy3; (8)

where �!, �b, �c, and �d are the mismatches.
After coupling, the response Rössler is obtained as

 

_x1 � �!x2 � x3 � ��!y2;

_x2 � x1 � bx2 � ��by2;

_x3 � c� x3�x1 � d� � ��c� ��dy3 � ��1� ��y1y3

� �p1 � �y3��x1 � �y1� � �p2 � �y1��x3 � �y3�:

(9)
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FIG. 1 (color online). Coupled Lorenz system. Response: r �
28, � � 10, b � 8=3, driver identical except �r � 10; " � 1.
Upper row: Time series of �x1; 2y1� at left, �x2; 2y2� at middle,
and �x3; 2y3� at right. Lower row: Plot of E at left, plots of y1 vs
x1 confirm AS (� � �2) at middle, CS (� � 2) at right.

FIG. 2. Lorenz attractor (� � �2): (a) 3D driver and
(b) amplified and inverted response. Similar axes are drawn in
the same scale.
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The parameters inH are designed as p1 � 1 and p2 � 9 to
establish stable synchronization. Figure 3 shows the nu-
merical results that confirm antiphase between the re-
sponse variable x3 and driver variable y3. This is also
true for the other state variables. The 3D trajectories in
the lower row confirm amplification of the driver in the
response. The response variables are inverted in the 3D plot
for visual resemblance with the driver.

Next, we present a Sprott system [14] with a single
quadratic nonlinearity as given by

 _x 1 � �ax2; _x2 � x1 � x3; _x3 � x1 � x2
2 � x3:

(10)

Another mismatch Sprott system is taken as a driver

 _y 1��ay2��ay2; _y2�y1�y3; _y3�y1�y2
2�y3:

(11)

After coupling, the response system (10) becomes

 _x1��ax2���a�1="�y2; _x2�x1�x3;

_x3�x1�x2
2�x3���1���y2

2��p�2�y2��x2��y2�:

(12)

" is the tuning parameter and taken as unity for the current
simulation. The driver and the response are chaotic before
coupling for (a � 0:225, �a � 0:025). With a choice of
p � �1, we find AS and amplification for � � �2 as
shown in Fig. 4. In the upper row, the middle 2D attractor
is the amplified and inverted response of the driver attractor
in the left; the plot of y1 vs x1 in the right confirms AS. The
time series of the driver and the response, in the lower left
panel, are clearly at opposite phase although their ampli-
tudes are different. A measure of E � �x1 � 2y1� main-
tains a zero value after the initial transients as shown in

lower right panel. This confirms an amplification of the
driver attractor in the response by a factor of 2.

Now we attempt to understand the effect of the addi-
tional linear coupling terms on the stability of synchroni-
zation by tuning ". The " is tuned from both sides of the
critical value (" � "c � 1), higher and lower. The error
between the driver and the response is then estimated by
using a similarity measure [6]

 � �
h�x1�t� � �y1�t� ���2i

�hx1�t�
2ihy1�t�

2i�1=2
: (13)

A global minimum of � � �min � 0 stands for stable
synchronization either CS or AS depending on the sign
of � values (delay � � 0 for CS or AS). For the Sprott
system, " is varied from 0.5 to 1.5 to obtain �min � 0 at
" � "c for a mismatch, �a � 0:025, and the correspond-
ing ln��� vs ("� "c) plot is shown in Fig. 5(a). A sharp
dipping into the minimum is observed at the critical value
"c � 1 when a stable synchronization is attained.
Effectively, " acts as a strength of the additional linear
coupling. Any compromise with the strength of this cou-
pling term will induce degradation of synchrony. The
process of transition to synchrony is found to be indepen-
dent of the system and the type of mismatch, as it is shown
to repeat in Fig. 5(b) for a coupled Lorenz system where "

FIG. 3 (color online). Coupled Rössler system. Response:! �
1, b � 0:15, c � 0:2, d � 10; driver identical except �! �
0:15. Upper row: Time series at left panel, y3 above, x3 below
at left; response is amplified and antiphase to the driver for � �
�2; plot x1 vs y1 at right panel. Lower row: 3D attractors of
driver (yi) at left, of response (� xi, i � 1; 2; 3) at right; similar
axes kept in same scale. H � j0 � 1 � 1; 1 b 0;p1 0 p2j
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FIG. 5. Transition to synchrony in (a) a coupled Sprott system
and (b) a Lorenz system. Open circles are for numerical data
points.
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is tuned from 0.8 to 1.2. However, we need further studies
for a complete understanding of this transition.

Finally, we present a physical realization of the coupled
Spott system (11) and (12). Figure 6 shows the coupled
circuit. The Op-Amp U1-U5 (U6-U10) with resistances
R1-R8 (R9-R16) and capacitances C1-C3 (C4-C6) represent
the driver OS-1 (response OS-2). The OPCL coupling is
designed using U11-U15. The continuity between the three
parts of the circuit, OS-1, OS-2, and OPCL coupling is
maintained via the terminals (1-1, 2-2 and 2A-2A, 2B-2B).
Measurements of the driver and the response variables
[analogs of y1 and x1 in Eqs. (11) and (12)] are made at
the outputs of U1 and U6, respectively, using a 4-channel
digital oscilloscope (Yokogawa, DL9140, 1 GHZ,
5 gigasamples=s). Experimental results shown in Fig. 7
are in good agreement with the numerical results in Fig. 4.

To summarize, the OPCL coupling ensures robust syn-
chronization in mismatch chaotic oscillators. The AS is
realized without any restriction on the symmetry class of a
system. Robust amplification is also possible using this
coupling. The physical realization of the coupling is not
difficult as shown in a Sprott circuit. We have also checked
that the coupling scheme can realize stable synchroniza-
tion in the presence of noise.
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FIG. 6. Coupled Sprott circuit: OS-1 connects OS-2 via OPCL
coupling; component values (1% tolerance) are noted.

FIG. 7 (color online). Oscilloscope picture: 2D attractors in
upper row, driver at left, amplified response at middle, axes in the
same scales; output voltages of U1 vs U6 at right. Middle
row: Driver time series. Lower row: Response time series.
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