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A three-dimensional correlation function obtained from midrapidity, low py, pion pairs in central Au +
Au collisions at \/syy = 200 GeV is studied. The extracted model-independent source function indicates
a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). A
proper breakup time 7, ~ 9 fm/c and a mean proper emission duration AT ~ 2 fm/c, leading to sizable
emission time differences ({|Af cml) = 12 fm/c), are required to allow models to be successfully
matched to these tails. The model comparisons also suggest an outside-in “burning” of the emission
source reminiscent of many hydrodynamical models.

232301-2



PRL 100, 232301 (2008)

PHYSICAL REVIEW LETTERS

week ending
13 JUNE 2008

DOI: 10.1103/PhysRevLett.100.232301

Collisions between heavy nuclei at ultrarelativistic en-
ergies produce transient systems with energy densities
much greater than that required to decompose bulk nuclear
matter into quarks and gluons [1]. Such systems were
predicted to have long lifetimes if a first order phase
transition occurred during their formation or decay [2].

A number of interferometry studies [3] have been made
to search for signals of long time delays in emissions from
actual reaction sources [4]. For a Gaussian source function,
assumed in the traditional Hanbury Brown—-Twiss method-
ology, this would be signaled by an increase in the width R
of the emission source function in the out direction of the
Berstch-Pratt coordinate system, i.e., Roy/Rgige > 1. In
this system, “out’ designates the direction of the pair total
transverse momentum, ‘“long”’ designates the beam direc-
tion, and “‘side” is perpendicular to “long” and “out.” No
such result has been found by these Hanbury Brown—Twiss
studies and the reported Gaussian source functions are
spheroidal with R, = R, in the longitudinally comov-
ing system (LCMS) [4]. However, a recent study with a
one-dimensional (1D) source imaging technique [5] has
observed a long non-Gaussian tail in the radial source
function and attributed it to possible lifetime effects
[6,7]. This suggests that further study of the source image
may give new insights into the reaction dynamics leading
to source breakup.

Here, we extract and perform a detailed study of the 3D
two-pion source function using the technique proposed by
Danielewicz and Pratt [8,9]. Namely, the 3D correlation
function is first decomposed into a basis of Cartesian
surface-spherical harmonics to extract the coefficients,
also called moments, of the expansion. In turn, they are
then imaged or fitted with a trial function to extract the 3D
source function, which is then used to probe the emission
dynamics of the pion source produced.

Au + Au data (at /syy = 200 GeV) were recorded
during 2004 with the PHENIX detector [10] at the
Relativistic Heavy Ion Collider (RHIC). The collision
vertex z (along the beam axis) was constrained to |z] <
30 cm of the nominal crossing point. Charged pions were
detected in the east and west central arms of PHENIX, each
of which subtends 90° in azimuth ¢, and +0.35 units of
pseudorapidity 1. Tracking and momentum reconstruction
were accomplished with the drift chamber and two layers
of multiwire proportional chambers with pad readout (PC1
and PC3). Particle momenta were measured with a resolu-
tion o,/p = 0.7% & 1.0%p (GeV/c).

Pion identification was achieved for transverse momen-
tum p, < 2.0 GeV/c and p, =1 GeV/c in the time of
flight and electromagnetic calorimeter, respectively. For
this analysis, midrapidity (—0.35 <y < 0.35, where y is
particle rapidity in the nucleus-nucleus center of mass
frame) pion pairs were selected with 0.2 < py <
0.36 GeV/c, where py is half the pion pair total transverse

PACS numbers: 25.75.Ld

momentum, from semicentral (0% —20%) Au + Au colli-
sions at ,/syy = 200 GeV. Track merging and splitting
effects were removed by appropriate cuts on both the real
and mixed pair distributions [7]. Systematic variations of
these cuts were explored to obtain systematic error esti-
mates; on average, they are well within the statistical
uncertainty. Hence, the pair cuts do not introduce any
significant bias in the correlation function.

The 3D correlation function C(q) = Nieq(q)/Npke(q)
was constructed as a ratio of 3D relative momentum dis-
tribution for 7" 7" and 7~ 7~ pairs in the same event
Nioa(q) to that from mixed events Ny, (q). Here, q =

(‘"—;"2) where p; and p, are the momentum 4-vectors in

the pair center of mass system (PCMS). The Lorentz trans-
formation of q from the laboratory frame to the PCMS is
made by first transforming to the pair LCMS along the
beam direction and then to the PCMS along the pair
transverse momentum [11]. C(q) is flat and normalized
to unity over 50 < |[q| < 100 MeV/c.

To obtain the moments, the 3D correlation function C(q)
is expanded in a Cartesian harmonic basis [8,9]

Lay,..,q;

where 1=0,1,2,..., a; =x, y or z, Ai,lwa,(ﬂq) are
Cartesian harmonic basis elements ({)4 is the solid angle
in q space), R, ....a,(q) are Cartesian correlation moments
given by Eq. (2), and ¢ is the modulus of q.

20+ D) dQ
Ripale) = 2008 [0, @R, @)
! w

Here, the coordinate axes are oriented so that z (long) is
parallel to the beam direction and x (out) points in the
direction of the total transverse momentum of the pair.

Correlation moments can be calculated from the mea-
sured 3D correlation function using Eq. (2). In this analy-
sis, Eq. (1) is truncated at [ = 6 and expressed in terms of
independent moments only. As expected from symmetry
considerations, odd moments were consistent with zero
within statistical uncertainty; higher order moments were
negligible [12]. Up to order 6, there are 10 independent
moments: R%, Ry, R, R}y, Ry, Ry 0, RS, RS, RS, and
R%,, (R3, is shorthand for R%,, dependent moments are
obtained from independent ones [8,9]). These independent
moments were extracted as a function of ¢ by fitting the
truncated series to the measured 3D correlation function
with the moments as the parameters of the fit. The statis-
tical error on the moments reflects the statistical error on
the 3D correlation function.

Figure 1 shows the correlation moments R/, e, Up tO
order [ = 6. In 1(a), R%(g) is shown along with R(gq) =
C(g) — 1; both represent angle-averaged correlation func-
tions, but R%(g) is obtained from the 3D correlation func-
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FIG. 1 (color online). Experimental correlation moments R'(q)
for [ =0, 2,4, 6. Panel (a) also shows a comparison between
R%g) and R(q). Systematic errors are less than the statistical
errors. The solid curves indicate the Hump function [Eq. (6)] fit.

tion via Eq. (1) while R(g) is evaluated directly from the
1D correlation function as in Ref. [7].

The very good agreement between R’(g) and R(q)
underlines the absence of any significant angular accep-
tance issues and attests to the reliability of the moment
extraction technique. Figures 1(b)—1(j) show that contri-
butions decrease with increasing / in each direction and are
relatively small for [ = 6 [12]. This justifies truncating
Eq. (1) at [ = 6. The 3D source function S(r) is obtained
from these moments via imaging or fitting (see below).

Analogous to Eq. (1), S(r) can be expanded in a
Cartesian Surface-spherical harmonic basis [Eq. (3)]

S(I’)zz z Slal,...,a,(r)Aiyl a,(Qr)- (3)

I a,..,

Substitution of the series for R(q) and S(r) into the 3D
Koonin-Pratt formalism [Eq. (4)] [3] gives a set of 1D
relations [Eq. (5)] [8,9] which connects the correlation
moments R’ , (¢) and source moments S, _, ().

Clq) — 1 = R(g) = j K@ ns® @

R . (q)=4m [ drPKi(q, NS, o (). (5)

S(r) gives the probability of emitting a pair of particles
with a separation vector r in the PCMS. The 3D kernel,
K(q, r), incorporates Coulomb force and Bose-Einstein
symmetrization. Strong interaction is assumed to be neg-
ligible for pions. Hence, no correction to the measured
correlation function for Coulomb and other final-state
interaction effects is required. The 1D imaging code of
Brown and Danielewicz [5] was used to numerically invert
sponding source moment Sfxlw_,a[(r); combining the latter
as in Eq. (3) yielded the source function.

The 3D source function can also be extracted by directly
fitting the 3D correlation function with an assumed func-
tional form for S(r). This corresponds to a simultaneous fit
of the ten independent moments. A 4-parameter 3D
Gaussian (ellipsoid) fit, using MINUIT minimization, gives
a poor result (y?/ndf = 3.7, where ndf is the number of
degrees of freedom). The solid curve in Fig. 1 shows the
result of a fit to the independent moments with an empirical
Hump function given by

2

2 2

X y z
SH(r,, ry,r.) = Aexp| —fi[—5 + 5 + —5-
(rx ry & Xp|: f <4r)2(s 4r§s 4’%&)

$2 y? 2
fl<4’”)2c1 ! ary " 4r§1>} ©
where A, ro, I'vg, Fygs Togs Txls Tygs Tz are fit parameters and
fo=1/[1+(r/ry)*), f;=1—f,. This 8-parameter
Hump function achieves a better fit to the data (y*/ndf =
1.4). Smearing the track momenta by the measured reso-
lution has a negligible effect on the data points and fits.
Figure 2(a)—2(c) shows a comparison of source function
profiles in the x, y, and z directions [S(r,), S(r,), and S(r,)]
obtained via fitting (line) and source imaging (squares).
Source image extraction makes no assumption for the
shape of the 3D source function, whereas moment fitting
explicitly assumes a shape. Therefore, the good agreement
from the two extraction methods confirms the sufficiency
of the Hump function but not its uniqueness.
The function S(r,) is characterized by a long tail, which
is resolved up to ~60 fm, in contrast to S(r,) and S(r,)

which range up to ~25 fm. This difference is also reflected

232301-4



PRL 100, 232301 (2008)

PHYSICAL REVIEW LETTERS

week ending
13 JUNE 2008

(a)S° + 5%+ 5%+ S5, (d) C*+ CZ4 Cot C&,

r O Data 1 1.1
2 )
10 O Imaging o
= L — HumpFit J1.05 &
0 T

V5, y=200GeV

0<cen<20 %
L

(b) S° + S%+ Sy4+ Sgs

n'nt &

0 70 20 30 40
q (MeV/c)

FIG. 2 (color online). ~Source function profiles S(r,), S(r,), and
S(r.) (left panels) and their associated correlation profiles C(q,),
C(q,), and C(g,) (right panels) in the PCMS. Symbols are as

indicated. The bands indicate statistical and systematic errors.

in the respective correlation profiles [Figs. 2(d)—2(f)] ob-
tained by summation of the data (circle), fit (line), and
image (square) moments up to order / =6 (Coulomb
effects are not removed). The broader S(r,) is associated
with the narrower C(q,) [Figs. 2(a) and 2(d)], as expected.

The extended tail lies along the pair total transverse
momentum. Thus, the relative emission times between
pions, as well as the source geometry, will contribute to
S(r,). The source lifetime contributes to the range of S(r_),
and S(ry) reflects its mean transverse geometric size. The
difference between S(r,) and S(r,) is thus driven by the
combination of the emission time difference, freeze-out
dynamics, and kinematic Lorentz boost.

The event generator THERMINATOR [12,13] can shed
more light on the source breakup and emission dynamics.
It gives thermal emission from a longitudinally oriented
cylinder of radius pp.., includes all known resonance
decays, and assumes Bjorken longitudinal boost invari-
ance. The option for blast-wave transverse expansion was
employed with radial velocity v, semilinear in p [14], i.e.,
v.(p) = (p/Pmax)/(P/ Pmax T v;), Where v, = 1.41. A
differential fluid element is a ring defined by cylindrical
coordinates z and p; it breaks up at proper time 7 in its rest
frame or at time ¢ in the lab frame, where /2 = 72 + z2. The
freeze-out hypersurface is given by 7 = 74 + ap, where 7,
is the proper breakup time for p = 0 and a represents the
slope of the freeze-out hypersurface in p-7 space (it sets
the space-time correlation for particle emission: a > 0
implies earlier emission of particles at small p’s, i.e.,

inside-out “‘burning” while a <0 implies the reverse,
i.e., outside-in ‘“burning”). In blast-wave mode,
THERMINATOR sets a = —(.5 for source emission from
outside in as in many hydrodynamical models.

Using a set of parameters tuned to fit charged pion and
kaon spectra [15], midrapidity pion pairs from
THERMINATOR were obtained with the effects of all known
resonance decay processes on and off. These pairs were
then transformed to the PCMS, as in the data analysis, to
obtain S(r;) distributions for comparison with the data.

Figure 3 shows that the 3D source function generated by
THERMINATOR calculations (solid triangles) with 74 =
8.55 fm/c, pmax = 8.92 fm, and other previously tuned
parameters [15], underestimates S(r,), S(r,), and S(r,).
Open triangles (Fig. 3) show that resonance decays repro-
duce S(ry) [3(b)] and extend the calculated source function
in x [3(a)] as expected, but not enough to account for the
long tails in x and z (these are longer than THERMINATOR
source profiles with resonance decays alone). This suggests
that they have substantial contribution from pion pairs with
significantly longer emission time differences. Attempts to
fit the distributions by only increasing 7, or with a =0
failed. The requirement of a < 0 in order to reproduce the
extracted source function suggests a fireball burning from
outside in.

The generated distribution of time differences can also
be lengthened by sampling pions from a family of hyper-
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FIG. 3 (color online). Source function comparison between
THERMINATOR calculation and image for (a) S(r,), (b) S(r,),
(¢) S(r,) in PCMS. Panel (d) compares Aty from
THERMINATOR events with various assumptions for A7 and
resonance emission.
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surfaces defined by a range of values of proper breakup
times 7/. One such parametrization consists of replacing 7
by 7/ chosen from an exponential distribution dN/d7' =
w expl— (7' — 7)/A7], where the width of the distri-
bution A7 represents the mean proper emission duration.
Figure 3 shows that this approach, with A7 =2 fm/c
(open circles), leads to a fairly good match to the three
observed source profiles. A 10% change in A7 (with other
parameters unchanged) spoils this match.

Figure 3(d) shows the relative emission time distribution
in the LCMS, Aty for pion pairs from events with the
parametrizations indicated. For a fixed 7 = 8.55 fm/c
(A7 = 0) and resonance decays excluded, the distribution
Aty oy is narrow, {|Af cm|) = 2.4 fm/c. The addition of
resonance decays adds a long tail and gives {|Af coml) =
8.8 fm/c. Replacing 7 with the exponential distribution 7/
with A7 = 2 fm/c results in a Af; ¢ distribution which is
significantly broadened to give {|Af cml) = 11.8 fm/c.
The wider distribution of time delays is needed to repro-
duce the source distributions. This implies a finite nonzero
proper emission duration in the emission rest frame. Note
that this Ay distribution broadening has only a small
effect on S(r,).

The source distensions in Fig. 3 point to substantial time
differences A#; o\ however, the interplay between proper
time and breakup dynamics is model dependent.
Nevertheless, the picture emerging from the data, in the
context of the THERMINATOR model, is consistent with an
expanding fireball of proper breakup time 74~ 9 fm/c
which hadronizes and emits particles over a short but
nonzero mean proper emission duration A7 ~ 2 fm/c.

In summary, a new model-independent, three-
dimensional source imaging technique has been applied
to extract the 3D pion emission source function in the
PCMS frame from Au+ Au collisions at /syy =
200 GeV. The source function has a much greater extent
in the out (x) and long (z) than in the side (y) direction.
THERMINATOR model comparison indicates a fireball burn-
ing from outside in with proper lifetime 7, ~ 9 fm/c and a
mean proper emission duration A7 ~ 2 fm/c, leading to

significant relative emission times ({|Af cpl) = 12 fm/c),
including those due to resonance decay.
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