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We address and solve the long-standing gauge-invariance problem of the nucleon spin structure.
Explicitly gauge-invariant spin and orbital angular momentum operators of quarks and gluons are
obtained. This was previously thought to be an impossible task and opens a more promising avenue
towards the understanding of the nucleon spin. Our research also justifies the traditional use of the
canonical, gauge-dependent angular momentum operators of photons and electrons in the multipole-
radiation analysis and labeling of atomic states and sheds much light on the related energy-momentum
problem in gauge theories, especially in connection with the nucleon momentum.
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The dilemma in separating the nucleon spin.—As a
composite particle, the nucleon naturally obtains its spin
from the spin and orbital motion of its constituents: quarks
and gluons. From a theoretical point of view, the first task
in studying the nucleon spin structure is to find out the
appropriate operators for the spin and orbital angular mo-
mentum of the quark and gluon fields. Given these opera-
tors, one can then study their matrix elements in a polarized
nucleon state and investigate how these matrix elements
can be related to experimental measurements. Disturbingly
and surprisingly, after 20 years of extensive discussions of
the nucleon spin structure [1–5], this first task has never
been done and has even largely eluded the attention of the
community.

At first thought, it seems an elementary exercise to
derive the quark and gluon angular momentum operators.
From the Lagrangian L � � 1

4F
a
��Fa�� � � �i��D� �

m� , where D� � @� � igA� and A� � Aa�T
a [with Ta

the generators of the color SU(3) group], one can promptly
follow Nöther’s theorem to write down the canonical ex-
pression of the conserved QCD angular momentum
 

~JQCD �
Z
d3x y

1

2
~� �

Z
d3x y ~x�

1

i
~r �

Z
d3x ~Ea

� ~Aa �
Z
d3xEai ~x� ~rAai

� ~Sq � ~Lq � ~Sg � ~Lg (1)

and readily identify the four terms here as the quark spin

[ ~� � diag� ~�; ~�� and ~�� ~� � i ~�], quark orbital angular
momentum, gluon spin, and gluon orbital angular momen-
tum, respectively. However, except for the quark spin, all
of the other three terms are gauge-dependent and thus have
obscure physical meanings. In this regard, it should be
noted that the total angular momentum is nonetheless
gauge-invariant (as it must be). This can be seen from an
alternative, explicitly gauge-invariant expression [6,7]:

 

~JQCD �
Z
d3x y

1

2
~� �

Z
d3x y ~x�

1

i
~D �

Z
d3x~x

� � ~Ea � ~Ba�

� ~Sq � ~L0q � ~J0g: (2)

This is obtained from Eq. (1) by adding a surface term

 

Z
d3x ~r � 	 ~Ea� ~Aa � ~x�
; (3)

which vanishes after integration. Since all of the terms in
Eq. (2) are separately gauge-invariant, it may seem appro-
priate to identify ~L0q as the quark orbital angular momen-
tum and ~J0g as the total gluon angular momentum.
However, a further decomposition of ~J0g into gauge-
invariant gluon spin and orbital parts is lacking.
Moreover, neither ~L0q nor ~J0g obeys the fundamental angu-
lar momentum algebra ~J� ~J � i ~J (although ~J0g does when
the quark field is absent); hence, they cannot be the rele-
vant rotation generators [7]. It has long been assumed by
the community that the reconciliation of gauge invariance
and the angular momentum algebra is not possible and that
gauge-invariant, local gluon spin and orbital angular mo-
mentum operators do not exist [4].

The QED problem revisited.—Since QED is also a
gauge theory, the problems above first emerged there. In
fact, by simply dropping the color indices, Eqs. (1) and (2)
become exactly the expressions for the electron and photon
angular momenta, which we denote as

 

~J QED � ~Se � ~Le � ~S� � ~L� (4)

 � ~Se � ~L0e � ~J0�: (5)

Equation (5) is obtained from Eq. (4) by adding the same
surface term as in (3) but without the color indices.
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Similarly to the situation in QCD, neither Eq. (4) nor
Eq. (5) is fully satisfactory: On the one hand, the canonical
angular momentum operators in Eq. (4) are what people
use familiarly in discussing polarized atomic states and
radiation, but the gauge dependence of these operators
leads to an uneasy concern about many calculations. As
one example, the labeling of atomic states, which uses
eigenvalues of the electron orbital angular momentum
operator ~Le �

R
d3x y ~x� 1

i
~r , seems gauge-dependent.

For another example, the multipole-radiation analysis,
which employs the multipole-field wave function con-
structed with photon spin and orbital angular momentum
operators, seems again gauge-dependent. On the other
hand, the gauge-invariant operators in Eq. (5) ~L0e and ~J0�
are not appropriate for constructing angular momentum
eigenstates (because, as we remarked above, they are not
angular momentum operators at all) and do not separate
photon spin from photon orbital angular momentum. It is
stated in common textbooks that gauge invariance prohib-
its the separation of photon angular momentum into spin
and orbital contributions [8,9], yet both photon spin and
orbital angular momentum have been measured separately
by experiments [10–16].

Despite the gauge dependence of Eq. (4), all QED
angular momentum calculations based on it seem to agree
well with experiments. It is therefore hard to believe that
all of those discussions, including the whole multipole-
radiation analysis and labeling of atomic, nuclear, and
hadronic states, are meaningless. Enlightened by earlier
clarifications [17,18], we find that there exists indeed a
satisfactory and decisive answer for the question of spin
and orbital angular momentum in QED:

 

~J QED �
Z
d3x y

1

2
~� �

Z
d3x y ~x�

1

i
~Dpure 

�
Z
d3x ~E� ~Aphys �

Z
d3xEi ~x� ~rAiphys

� ~Se � ~L00e � ~S00� � ~L00�: (6)

Here ~Dpure �
~r� ie ~Apure, ~Apure � ~Aphys � ~A, and the two

parts are defined via

 

~r � ~Aphys � 0; (7)

 

~r� ~Apure � ~0: (8)

These are nothing but the transverse and longitudinal
components of the vector potential ~A. The subscripts
used here are intended to make the physical (vs. pure-
gauge) content clear and to prepare for the generalization
to QCD. With the boundary condition that ~A, ~Apure, and
~Aphys all vanish at spatial infinity, Eqs. (7) and (8) prescribe

a unique decomposition of ~A into ~Apure and ~Aphys and
dictate their distinct gauge transformation properties:

 

~A pure ! ~A0pure � ~Apure �
~r�; (9)

 

~A phys ! ~A0phys � ~Aphys; (10)

under a gauge transformation �. Equations (8) and (9) tell
us that, in QED, ~Apure is a pure-gauge field in all gauges and
that it transforms in the same manner as does the full vector
field: ~A! ~A0 � ~A� ~r�. On the other hand, the trans-
verse field ~Aphys is unaffected by gauge transformations

and so can be regarded as the ‘‘physical’’ part of ~A.
Equation (6) is obtained from Eq. (4) by adding another

surface term:

 

Z
d3x ~r � 	 ~E� ~Apure � ~x�
: (11)

Now we have all of the elements needed to explain how
Eq. (6) gives the correct expressions for the spin and orbital
angular momenta of electrons and photons, including their
densities. First of all, the total ~JQED given by Eq. (6) equals
that in Eqs. (4) and (5), for they merely differ by surface
terms. Second, the gauge transformation properties of ~Apure

and ~Aphys show that each density term in Eq. (6) is sepa-
rately gauge-invariant (and, hence, so is the integrated
operator). Third, like the canonical ~Le, the gauge-invariant
~L00e satisfies the angular momentum algebra ~J� ~J � i ~J.
This is due to the property of ~Apure in Eq. (8). Finally, we

note that, in the Coulomb gauge, ~r � ~A � 0, so the longi-
tudinal (pure-gauge) field ~Apure vanishes; thus, all quanti-
ties in Eq. (6) coincide with their canonical counterparts in
Eq. (4). This observation is of vital importance. It reveals
that the gauge-invariant quantities in Eq. (6) can all be
conveniently computed via the canonical operators in the
Coulomb gauge. This is actually what people (implicitly)
do in studying atomic and electromagnetic angular mo-
menta (such as in multipole radiation), including the recent
measurements of the photon orbital angular momentum
[11–16]. It is thus natural that these studies always obtain
reasonable results.

Hindsight for QED and solution for QCD.—After con-
firming that Eq. (6) is indeed the correct and satisfactory
answer for angular momenta in QED, we can observe
something about it in hindsight. The form of Eq. (6) could
have been guessed by reasonable physical considerations:
The photon angular momentum should contain only the
physical part of the gauge field, which should, neverthe-
less, not appear in the expression for the electron orbital
angular momentum ~L00e . The latter should thus include only
the nonphysical ~Apure, so as to cancel the equally non-
physical phase dependence of the electron field, and keep
the whole ~L00e gauge-invariant. From this hindsight for
QED, it is natural to expect that the correct, gauge-
invariant expressions of QCD angular momenta should be
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~JQCD�
Z
d3x y

1

2
~� �

Z
d3x y ~x�

1

i
~Dpure �

Z
d3x ~Ea

� ~Aaphys�
Z
d3xEai ~x� ~rAaiphys

� ~Sq� ~L00q� ~S00g� ~L00g; (12)

where ~Dpure �
~r� ig ~Apure and ~Apure � ~AapureTa. The es-

sential task remaining now is to properly define the pure-
gauge field ~Apure and the physical field ~Aphys � ~AaphysT

a so
that they have the desired gauge transformation properties
and to prove that the sum of the four terms in Eq. (12)
equals that in Eqs. (1) and (2). This, however, turns out to
be nontrivial.

The parallel construction of Eqs. (7) and (8) obviously
does not work in QCD. For one thing, ~Apure defined by ~r�
~Apure � ~0 is not a pure-gauge term in QCD; for another,
~r � ~Aphys � ~0 and ~r� ~Apure � ~0 are not invariant under
the SU(3) gauge transformation:

 A � ! A0� � UA�Uy �
i
g
U@�Uy: (13)

To make ~Apure a pure-gauge term in QCD, we require,
instead of Eq. (8), that

 

~D pure � ~Apure �
~r� ~Apure � ig ~Apure � ~Apure � ~0: (14)

This provides two independent equations for ~Apure. We still
need a third equation that plays the same role as Eq. (7)
does in QED, so that ~Aphys and ~Apure have the required
transformation properties:

 

~A pure ! ~A0pure � U ~ApureUy �
i
g
U ~rUy; (15)

 

~A phys ! ~A0phys � U ~AphysU
y: (16)

To seek this third equation, we proceed inversely by
applying these transformations to examine the gauge in-
variance of each operator in Eq. (12). The reason why this
is possible will be clear shortly below.

The quark orbital angular momentum ~L00q provides no
further constraints. Equations (14) and (15) guarantee its
gauge invariance, as well as the correct angular momentum
algebra ~L00q � ~L00q � i ~L00q. The gluon spin ~S00g provides no
further constraints either. Equation (16) tells us that it is
gauge-invariant. However, the situation for the gluon orbi-
tal angular momentum ~L00g is different. Unlike in QED,
~Aphys here is gauge-covariant instead of invariant, which
leads to the gauge transformation of ~L00g:
 

Eai ~x� ~rAaiphys � 2TrfEi ~x� ~rAi
physg ! 2TrfUEiUy ~x

� ~r�UAi
physU

y�g

� 2TrfEi ~x� ~rAi
physg � 2Trf ~x�Uy� ~rU�

� � ~Aphys � ~E� ~E � ~Aphys�g; (17)

where ~E � ~EaTa. Hence, to make ~L00g invariant under arbi-
trary gauge transformations, we have to set

 	 ~Aphys; ~E
 � ~Aphys � ~E� ~E � ~Aphys � 0: (18)

This is the third equation that we seek. The remaining task
is to cross-check the consistency of whether or not
Eqs. (14) and (18) dictate the transformation properties
in Eqs. (15) and (16).

Before making this cross-check, we first make another
vital check, namely, whether the definitions of ~Apure and
~Aphys by Eqs. (14) and (18) ensure that the total angular
momentum in Eq. (12) is to equal that in Eqs. (1) and (2).
Since no more tricks are available, the answer must be
positive, or our entire approach will founder. A slightly
lengthy but straightforward calculation shows that the
answer is indeed positive. With the definitions in
Eqs. (14) and (18), Eq. (12) can be obtained from Eq. (1)
by adding a surface term similar to (11) for QED:

 

Z
d3x ~r � 	 ~Ea� ~Aapure � ~x�
: (19)

As to the cross-check, we note that ~A0pure and ~A0phys given
by Eqs. (15) and (16) are solutions of

 

~D 0pure � ~A0pure � ~0; (20)

 	 ~A0phys; ~E
0

 � 0; (21)

where ~D0pure �
~r� igA0pure and ~E0 � U~EUy. The remain-

ing question is whether Eqs. (20) and (21) have any other
solution than that given by Eqs. (15) and (16). This is
equivalent to asking whether Eqs. (14) and (18) uniquely
determine the decomposition of ~A into ~Apure and ~Aphys or,

essentially, whether the constraint 	 ~A; ~E
 � 0 fixes the
gauge completely. This is a tricky question, for, unlike in
QED, many gauges in QCD suffer from topological com-
plexity such as Gribov copies [19]. Fortunately, such com-
plexity does not bother us here: If supplementary
conditions are needed to restrict the solutions of
Eqs. (20) and (21) to that given by Eqs. (15) and (16),
they can simply be added, without affecting the equiva-
lence of Eq. (12) with Eqs. (1) and (2) and without affect-
ing the gauge invariance of the angular momentum
operators we constructed, because these properties rely
only on Eqs. (14)–(16) and (18).

Remarks and discussion.—(i) We have noted that, for
QED in the Coulomb gauge ~r � ~A � 0, Eq. (6) coincides
with Eq. (4). Similarly, for QCD, in the gauge 	 ~A; ~E
 � 0
(together with possible supplementary conditions to com-
pletely fix the gauge), Eq. (12) coincides with Eq. (1).
Namely, in actual calculations, QCD shares the same
nice feature as in QED that the gauge-invariant, physically
meaningful angular momenta can be conveniently com-
puted via their canonical, gauge-dependent counterparts in
a physical gauge in which the pure-gauge component van-
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ishes. From the QCD equation of motion ~r� ~E� ig	 ~A; ~E
�
g yTa Ta, we see that the gauge 	 ~A; ~E
 � 0 says essen-
tially that the (gauge-dependent) color charge carried by
gluons vanishes. So 	 ~A; ~E
 � 0 has the sense of a ‘‘gener-
alized’’ Coulomb gauge, for it leads to an equation of
motion ~r � ~Ea � g yTa , similar to Gauss’ law in QED.

(ii) Our construction guarantees that all angular momen-
tum operators transform properly under spatial translation
and rotation. To figure out how they transform under boost,
we need to carry out the canonical quantization procedure
(preferably in the physical gauge in which the pure-gauge
terms vanish) and compute the commutators of the angular
momentum operators with the interaction-involving boost
generators. This nontrivial task will be our next work.

(iii) In the literature, there have been various discussions
about decomposing the Yang-Mills field into several com-
ponents representing different degrees of freedom, based
mainly on group-theoretical considerations [20–22]. It
would be very interesting to investigate how these decom-
positions are related to ours, which is dictated by the
requirement of a physically meaningful angular momen-
tum expression.

(iv) The so-called gluon polarization �G being mea-
sured at several facilities [3] is related to ~Sg in Eq. (1) in the
temporal gauge in the infinite-momentum frame of the
nucleon [23]. From our discussion, �G is not the gauge-
invariant gluon spin S00g that we construct here.

(v) Beth made a direct measurement of the photon spin
over 70 years ago [10]. Detection and manipulation of the
photon orbital angular momentum have also been carried
out recently and have become a hot topic due to their
potential application in quantum information processing
[11–16]. These measurements can be straightforwardly
interpreted with the operators in Eq. (6), via its equivalence
to Eq. (4) in the Coulomb gauge. This should encourage
the investigation of the picture of the nucleon spin in terms
of the gauge-invariant, physically meaningful decomposi-
tion in Eq. (12), which is completely analogous to Eq. (6)
for QED. Experimentally, the free-beam-based photon
measurements can certainly not be extended to gluons
directly, and appropriate (even ingenious) methods for
measuring L00q, S00g, and L00g will have to be invented; but
the clear physical meanings and explicit gauge invariance
of these quantities guarantee at least that there can be
pertinent theoretical calculations of them, especially in
lattice QCD.

(vi) From the correct, gauge-invariant angular momen-
tum expression in Eq. (6), we can read out the correct
electromagnetic momentum density to be Ei ~rAiphys, in-

stead of the renowned Poynting vector ~E� ~B. The latter
actually includes a spin current and can be unambiguously
distinguished from the purely mechanical momentum
Ei ~rAiphys by delicate measurement [24]. In QCD, ~Ea �
~Ba leads to a picture that gluons carry half of the nucleon

momentum on the light cone [25]. This picture may there-
fore need to be revised. Similarly to the situation for the
angular momentum, the momentum operators we propose
transform properly under spatial translation and rotation,
and next, we will study how they transform under boost by
computing their commutators with the boost generators via
canonical quantization.
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