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We calculate the next-to-leading-order QCD corrections to J= polarization at the Fermilab Tevatron
and CERN Large Hadron Collider. Our results show that the J= polarization status drastically changes
from transverse-polarization dominant at leading order to longitudinal-polarization dominant at next-to-
leading order. Although the theoretical evaluation predicts a larger longitudinal polarization than the value
measured at the Tevatron, it may provide a solution towards the previous large discrepancy for J= 
polarization between theoretical predication and experimental measurement.
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Since its discovery in 1974, study on J= production
never ends, because there are still many problems unsolved
yet, and all of them stimulate people to investigate the
essence of the mechanisms which govern the reactions. It
indeed provides an opportunity to probe both perturbative
and nonperturbative aspects of QCD dynamics. Especially,
there exists a huge discrepancy of the experimental data
and theoretical predictions about the production rate of
high-pt J= ; to remedy it, a color-octet mechanism [1]
was proposed based on the nonrelativistic QCD (NRQCD)
[2]. The factorization formalism of NRQCD provides a
theoretical framework for studying the heavy-quarkonia
production. It allows a consistent theoretical prediction to
be made and to be improved systematically in the QCD
coupling constant �s and the heavy-quark relative velocity
v. Although it seems that the picture qualitatively agrees
with experimental data, a simple application of NRQCD
cannot provide satisfactory quantitative estimates for J= 
photon production at the DESY ep collider HERA [3,4],
J= � 0� polarization of hadron production at the Fermilab
Tevatron, and J= production in B factories. Indeed, for
J= production, the theoretical prediction at leading order
(LO) fails to reach an agreement with experimental data.
Kramer et al. find that the experimental results on inelastic
J= photoproduction are adequately described by the
color-singlet channel alone once higher-order QCD cor-
rections are included [4]. The authors of Ref. [5] find that
the data taken by the DELPHI Collaboration at CERN
LEP2 [6] evidently favor the NRQCD formalism for J= 
production in �� ! J= X rather than the color-singlet
mechanism. Moreover, the LO NRQCD calculation pre-
dicts a sizable transverse-polarization rate for high-pt J= 
[7], while the measurement at Fermilab Tevatron [8] de-
mands that there exists a slight longitudinal polarization.

To solve such puzzles, one natural way is to check if the
next-to-leading-order (NLO) effects can change the situ-
ation. In fact, there are a few examples showing that NLO
corrections may be quite large and change the whole
characteristics of the theoretical predictions on pt distri-

bution of J= . It is found in Ref. [9] that the contribution of
higher-order QCD process �� ! J= c �c is of the same
order as and/or even larger than that of the LO process
for a color singlet in the high-pt region. The authors of
Ref. [10] indicate that at the Tevatron the NLO process
cg! J= c, where the c quark in the initial state is the
intrinsic charm quark of the beam proton, presents a large
contribution for high-pt J= . Serious discrepancies be-
tween LO theoretical predictions [11,12] and experimental
results [13,14] for the single and double charmonium
productions in e�e� annihilation at B factories have
been discussed by many authors. It seems that they may
be resolved by including higher-order corrections: both
NLO QCD and relativistic corrections [11,15,16].

Recently, the NLO QCD corrections to J= hadron
production have been calculated by Campbell, Maltoni,
and Tramontano [17]. Their results show that the total
cross section is boosted by a factor of about 2 and the
production rate of J= is much increased for larger trans-
verse momentum pt. The NLO process gg! J= c �c has
been calculated by Artoisenet, Lansberg, and Maltoni [18].
It causes a sizable contribution to the pt distribution of
J= , especially at the high-pt region. An s-channel treat-
ment to J= hadron production gives longitudinal polar-
ization in the work of Haberzettl and Lansberg [19].

As the NLO correction is so important for the pt distri-
bution and the total cross section, it would be interesting to
investigate its effects on the polarization status. In this
Letter, we calculate the NLO QCD corrections to the
J= polarization at the Tevatron and LHC. In the calcu-
lation, we employ our Feynman diagram calculation pack-
age (FDC) [20] with additional parts which provide a
complete method for calculating tensor and scalar integrals
in the dimensional regularization scheme. This package
has been used in our previous work [16].

At the LO, the partonic differential cross section for
process g�p1� � g�p2� ! J= �p3� � g�p4� is evaluated
in the framework of the NRQCD factorization as
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where Rs�0� is the radial wave function of J= at origin
and the reasonable approximation MJ= � 2mc is taken.
The LO total cross section is obtained by convoluting the
partonic cross section with the parton distribution function
(PDF) Gg�x;�f� in the proton:

 �B �
Z
dx1dx2Gg�x1; �f�Gg�x2; �f��̂B; (2)

where �f is the factorization scale. In the following, �̂
represents the corresponding partonic cross section.

The NLO corrections include virtual corrections and real
corrections. There are UV, IR, and Coulomb singularities
in the calculation of the virtual corrections. The UV diver-
gences existing in the self-energy and triangle diagrams are
removed by the renormalization of the QCD gauge cou-
pling constant, charm quark mass, and charm quark and
gluon fields. Here we adopt the renormalization scheme
used in Ref. [21]. For the charm quark mass and charm
quark and gluon fields, the renormalization constants Zm,
Z2, and Z3 are determined by the on-mass-shell (OS)
scheme, while for the QCD gauge coupling Zg is fixed in
the modified-minimal-subtraction (MS) scheme:
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where �E is the Euler’s constant, �0 �
11
3 CA �

4
3TFnf is

the one-loop coefficient of the QCD beta function, and nf
is the number of active quark flavors. There are three light
quarks u, d, and s, so nf � 3. In SU�3�c, the color factors
are given by TF �

1
2 , CF �

4
3 , and CA � 3. �r is the

renormalization scale.
After having fixed the renormalization scheme, there are

129 NLO diagrams in total, including counterterm dia-
grams. They are shown in Fig. 1 and divided into 8 groups.
Diagrams of group (e) that have a virtual gluon line con-
nected with the quark pair lead to a Coulomb singularity,
which can be isolated and absorbed into the c �c wave
function. By adding all diagrams together, the virtual cor-
rections to the differential cross section can be expressed as

 

d�̂V

dt
/ 2Re�MBMV	�; (4)

where MB is the amplitude at LO and MV is the renormal-
ized amplitude at NLO. MV is UV and Coulomb finite, but
it still contains IR divergences:
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The real corrections arise at the parton level subpro-
cesses gg! J= gg, gg! J= q �q, and gq� �q� !
J= gq� �q�. The phase space integration of the above pro-
cesses generates IR singularities, which are either soft or
collinear and can be conveniently isolated by slicing the
phase space into different regions. We use the two-cutoff
phase space slicing method [22], which introduces two
small cutoffs to decompose the phase space into three
parts. Then the cross section can be written as

 �R � �H �C � �S � �HC � �HC
add: (6)

The hard noncollinear part �H �C is IR finite; one can
numerically compute it by using standard Monte Carlo
integration techniques. �̂S comes from the soft regions
containing soft singularities; thus, it is calculated analyti-
cally under soft approximation. It is easy to find that the
soft singularities caused by emitting soft gluons from the
quark pair in the S-wave color singlet J= are canceled by
each other. �HC from the hard collinear regions contains
collinear singularities which are factorized out, and the
singularities are partly absorbed into the redefinition of
the PDF (usually it is called the mass factorization [23]).
Here we adopt the scale-dependent PDF using the MS
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FIG. 1. One-loop diagrams for gg! J= g. Groups (a) and (b)
are counterterm diagrams of the quark-gluon vertex and corre-
sponding loop diagrams. Group (c) is the quark self-energy
diagrams and corresponding counterterm ones. More diagrams
can be obtained by permutation of external gluons.
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convention given by Ref. [22]. After redefinition of the
PDF, an additional term�HC

add is separated out. Finally, all of
the IR singularities are canceled analytically for �̂S �
�̂HC � �̂V .

To obtain the transverse momentum distribution of J= ,
a transformation of integration variables (dx2dt!
Jdptdy) is introduced. Thus we have

 

d�
dpt
�
Z
Jdx1dyGg�x1; �f�Gg�x2; �f�

d�̂
dt
; (7)

where y and pt are the rapidity and transverse momentum
of J= in the laboratory frame, respectively. The polariza-
tion factor � is defined as

 ��pt� �
d�T=dpt � 2d�L=dpt
d�T=dpt � 2d�L=dpt

: (8)

To calculate ��pt�, the polarization of J= must be ex-
plicitly retained in the calculation. The partonic differential
cross section for a polarized J= could be expressed as

 

d�̂	
dt
� a��	� � �	�	� �

X
i;j�1;2

aijpi � ��	�pj � �
	�	�; (9)

where 	 � T1, T2, L. ��T1�, ��T2�, and ��L� are the two
transverse-polarization vectors and the longitudinal one of
J= , and the polarizations of all of the other particles are
summed over in n dimensions. It causes a more difficult
tensor reduction path than that with all of the polarizations
being summed over in the calculation of virtual correc-
tions. One can find that a and aij are finite when the virtual
corrections and real corrections are summed up.

To make a cross-check, we carry out another calculation.
Namely, we calculate the differential cross section �HC

add
and �̂S � �̂HC � �̂V with the polarizations of all particles
being summed up analytically. The results are numerically
compared with that obtained without summing up the
polarization of J= . Moreover, to check the gauge invari-
ance, in the expression we explicitly keep the gluon polar-
ization vector and then replace it by its 4-momentum in the
final numerical calculation. Definitely the result must be
zero, and our results confirm it. To calculate the real
correction �H �C to the process, only numerical computation
is carried out, and we sum over only the physical polar-
izations of the gluons to avoid involving diagrams which
contain external ghost lines.

In our numerical calculations, the CTEQ6L1 and
CTEQ6M PDFs [24] and the corresponding fitted values
�s�MZ� � 0:130 and �s�MZ� � 0:118 are used for LO and
NLO calculations, respectively. For the charm quark mass
and the wave function at the origin of J= , we take mc �
1:5 GeV and jRs�0�j2 � 0:810 GeV3, respectively. The
two phase space cutoffs �s � 10�3 and �c � �s=50 are
chosen. To check whether the final results depend on the
two cutoffs, different values of �s and �c are used, where
�s can be as small as �s � 10�5, and the invariance is
obviously observed within the error tolerance of less than
1%. It is well known that the perturbative expansion cannot

be applicable to the regions with small transverse momen-
tum and large rapidity of J= . Therefore, the result is
restricted to the domain pt > 3 GeV and jyJ= j being
less than 3 or 0.6.

The dependence of the total cross section at the renor-
malization scale �r and factorization scale �f is obtained,
and it agrees with Ref [17]. In Fig. 2, the pt distribution of
J= is presented, and the J= polarization factor � as a
function of pt is shown in Fig. 3. At LO, � is always
positive and becomes closer to 1 as pt increases, and this
figure means that the transverse polarization is more than
the longitudinal one and even becomes dominant in the
high-pt region. But there is a dramatic change when the
NLO QCD corrections are taken into account. � is always
negative and becomes closer to �0:9 as pt increases; this
new figure indicates that the longitudinal polarization is
always more than the transverse one and even becomes
dominant in the high-pt region. Meanwhile, the J= po-
larization of process gg! J= c �c is nearly zero. By in-
cluding the contribution of this subprocess, the curve of
NLO� in Fig. 3 is closer to the experimental data.

In summary, we have calculated the NLO QCD correc-
tion to the J= hadron production at the Tevatron and
LHC. Dimensional regularization is applied to deal with
the UV and IR singularities in the calculation, and the
Coulomb singularity is isolated and absorbed into the c �c
bound state wave function. To deal with the soft and col-
linear singularities in the real corrections, the two-cutoff
phase space slicing method is used. By summing over all of
the contributions, a result which is UV, IR, and Coulomb
finite is obtained. Numerically, we obtain a K factor (the
ratio of the NLO contribution to the LO) of about 2 for the

total cross section with �r � �f �
��������������������������
�2mc�

2 � p2
t

p
. The

transverse momentum distribution of J= is presented in

FIG. 2. Transverse momentum distribution of differential cross
section with �r � �f �

��������������������������
�2mc�

2 � p2
t

p
at the LHC (upper

curves) and the Tevatron (lower curves). The center mass energy
is

����������������
sTevatron
p

� 1:98 TeV and
����������
sLHC
p

� 14 TeV, respectively.
NLO� denotes the result including a contribution from gg!
J= c �c at NLO.

PRL 100, 232001 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JUNE 2008

232001-3



the text, and we show that the NLO corrections increase the
differential cross section more as pt becomes larger and
eventually can enhance it by 2 or 3 orders in magnitude at
pt�50 GeV. It confirms the calculation given in Ref. [17].
The real correction process gg! J= c �c is also calculated,
and the results agree with those of Ref. [18].

The NLO contributions to the J= polarization are
studied for the first time, and our results indicate that the
J= polarization is dramatically changed from more trans-
verse polarization at LO into more longitudinal polariza-
tion at NLO. Even though our calculation results in a more
longitudinal-polarization state than the recent experimen-
tal data [8] at the Tevatron, it raises a hope to solve the
large discrepancy between the LO theoretical predication
on J= polarization and the experimental measurement
and suggests that the next important step is to calculate
the NLO correction to the hadron production of color-octet
state J= �8�. By refixing the color-octet matrix elements,
we will see what an involvement of the NLO corrections
can induce for the polarization of J= .
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FIG. 3. Transverse momentum distri-
bution of polarization � with �r �

�f �
��������������������������
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t

p
at the Tevatron

(left) and the LHC (right). The unlabeled
dotted line denotes the polarization of
gg! J= c �c, and NLO� denotes the
result including that of gg! J= c �c.
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