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Starting from microscopic mechanics, we derive thermodynamic relations for heat conducting non-
equilibrium steady states. The extended Clausius relation enables one to experimentally determine
nonequilibrium entropy to the second order in the heat current. The associated Shannon-like microscopic
expression of the entropy is suggestive. When the heat current is fixed, the extended Gibbs relation
provides a unified treatment of thermodynamic forces in the linear nonequilibrium regime.
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Thermodynamics (TD) is a theoretical framework that
describes universal quantitative laws obeyed by macro-
scopic systems in equilibrium. A core of TD is the
Clausius relation �S � Q=T, which relates the entropy
with the heat transfer caused by a change in the system.
Combined with energy conservation, the Clausius relation
leads to the Gibbs relation TdS � dU�

P
ifid�i, where

�i is a controllable parameter and fi the corresponding
generalized force. The Gibbs relation is particularly useful
since it represents the forces as gradients of suitable ther-
modynamic potentials. It also played a key role when
Gibbs constructed equilibrium statistical mechanics.

Here we wish to address the fundamental question
whether TD can be extended to nonequilibrium steady
states (NESS) which, like equilibrium states, lack macro-
scopic time dependence. We shall call the possible exten-
sion steady-state thermodynamics (SST). The possibility
of SST is far from trivial since NESS exhibit many prop-
erties which are very different from equilibrium states.
First of all a naive extension of the Clausius relation to
NESS is never possible since the heat transfer Q generally
diverges linearly in time. It is also a deep theoretical
question whether the long-range correlation universally
observed in NESS [1] is consistent with SST. In addition
to such abstract interests, there are nonequilibrium phe-
nomena which may be better understood using SST. An
interesting example is the force exerted on a small rigid
body placed in a heat conducting fluid [2]. This force may
be understood as a thermodynamic force in SST (see [3] for
related ideas).

NESS sufficiently close to equilibrium can be charac-
terized by the linear response theory. But this theory, which
requires an ensemble of trajectories in space-time, does not
lead us directly to SST. It is also clear that the theory only
gives the result up to the first order in the ‘‘degree of
nonequilibrium.’’

Although an extension of TD to NESS (or, equivalently,
a construction of SST) may sound as a formidably difficult
task, there are at least two branches of study which are
encouraging. One is the series of works which reveal deep
implications on NESS of the microscopic time-reversal

symmetry. It has been shown that the simple symmetry
(1) leads to various nontrivial results including the Green-
Kubo relation, Kawasaki’s nonlinear response relation, and
the fluctuation theorem [4,5]. Although none of these
works directly treat extensions of TD, techniques for char-
acterizing NESS and energy transfer may be useful. The
other is a series of works in which the theoretical consis-
tency of SST was examined from purely phenomenological
points of view. These works provide us with some useful
guidelines for constructing SST. In [6] (see also [7]) it was
proposed that heat Q in the Clausius relation should be
replaced by ‘‘excess heat,’’ which is the intrinsic heat
transfer caused by the change of the state. In [8] it was
conjectured that one should fix the total heat current J to
get a Gibbs relation in a heat conducting NESS.

In the present Letter, we shall report a unification of
these two branches, which has led us to a microscopic
construction of SST (see [8,9] for early attempts to con-
struct SST). More precisely we start from microscopic
mechanics, and derive a natural extension of the Clausius
relation to heat conducting NESS. The extended Clausius
relation enables one to experimentally determine nonequi-
librium entropy to the second order in the heat current. This
extends the construction of entropy for NESS by Ruelle
[10], who treated a simpler system with isokinetic thermo-
stat. We further determine the precise form (4) of the
entropy. In systems with a fixed heat current, we derive
an extension of the Gibbs relation, which enables one to
treat thermodynamic forces in the linear nonequilibrium
regime in a new unified manner.

Setup.—The theory can be developed in various non-
equilibrium settings including driven or sheared fluid. For
simplicity we here focus on heat conduction, and consider
a system which is attached to two heat baths and has
controllable parameters (such as the volume).

We assume that the system consists of N particles
whose coordinates are collectively denoted as � �
�r1; . . . ; rN; p1; . . . ;pN�. We write its time reversal as
�� � �r1; . . . ; rN;�p1; . . . ;�pN�. When discussing time
evolution of �, we denote by ��t� its value at time t, and
by �̂ � ���t��t2�0;T � its history (or path) over the time
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interval �0;T �. Given a path �̂, we denote its time reversal
as �̂y � ���T � t���t2�0;T �.

We take a Hamiltonian satisfying the time-reversal sym-
metry H���� � H���

��, where � is the set of controllable
parameters. Time evolution of the system is determined by
the Hamiltonian and coupling to the two external heat
baths with inverse temperatures �1 and �2. To model the
heat baths, one may use Langevin noise or an explicit
construction using Hamiltonian mechanics as in [11].
Our results are valid in both (and other physically natural)
settings. We shall characterize our system using the set of
parameters � � ��1; �2;��.

An external agent performs an operation to the system
by changing � according to a prefixed protocol. A protocol
is specified by a function ��t� � ��1�t�; �2�t�;��t�� of t 2
�0;T �. We denote by �̂ � ���t��t2�0;T � the whole protocol.
Again �̂y � ���T � t��t2�0;T � denotes the time reversal of
�̂. By ���we denote a protocol in which the parameters are
kept constant at �.

Consider a time evolution with a protocol �̂, and denote
the probability weight for a path �̂ as W �̂��̂�. It is nor-
malized as

R
��0���i

D�̂W �̂��̂� � 1 for any initial state �i,

where D�̂ denotes the path integral over all the histories
(with the specified initial condition).

Time-reversal symmetry.—Let Jk��̂; t� be the heat cur-
rent from the kth bath to the system at time t in the history
�̂. Then the entropy production rate at t is given by
��̂��̂; t� � �

P2
k�1 �k�t�Jk��̂; t�. By integration, we get

the entropy production ��̂��̂� �
R
T
0 dt��̂��̂; t�.

Then it has been shown [5,11] that the present (and other
physically realistic) time evolution satisfies

 W �̂��̂� �W �̂y��̂
y�e��̂��̂�; (1)

which is the basis of the present work.
Steady state and its representation.—We assume that the

system settles to a unique NESS when it evolves for a
sufficiently long time with fixed �. We take T much larger
than the relaxation time. We treat NESS with a small heat
current, where convection hardly takes place.

In the NESS characterized by�, the expectation value of
the current Jk��̂; t� takes a constant value, which we denote
as �Jk���. We define the excess heat current from the kth
bath as Jex

k;�̂��̂; t� � Jk��̂; t� � �Jk���t��. Then �ex
�̂ ��̂; t� �

�
P2
k�1 �k�t�J

ex
k;�̂��̂; t� and its integration �ex

�̂ ��̂� �R
T
0 dt�ex

�̂ ��̂; t� are the excess entropy production rate and
the excess entropy production, respectively.

We denote by �st
���� the probability distribution for the

NESS characterized by �. By using (1), it was shown in
[12] (see also [11]) that the distribution has a concise
representation

 �st
����� exp

�
�S����

h�ex
���i
���
st;��h�

ex
���i
���
��;st

2
� ~R��;��

�
;

(2)

where S��� is determined by normalization, and ~R��;�� �
O��3�. Here the degree of nonequilibrium � is a dimen-
sionless quantity proportional to the typical heat current.
Throughout the present Letter, h	 	 	i�̂�i;�f

stands for the
expectation taken with respect to the path probability
W �̂��̂� with the initial and the final conditions �i and
�f , respectively, where the subscript st denotes the steady
state [13]. The representation (2) plays a fundamental role
in our construction of SST.

Extended Clausius relation.—Our first result is a natural
extension of the Clausius relation.

Let �̂ be an arbitrary quasistatic protocol in which the
parameters change slowly and smoothly from �i � ��0� to
�f � ��T �. Then the extended Clausius relation is

 S��f� � S��i� � �h�
ex
�̂ i

�̂ � R��̂�; (3)

where R��̂� is a small error about which we discuss shortly.
(Here, and in what follows, h	 	 	i�̂ is shorthand for
h	 	 	i�̂st;st.) Eq. (3) is the core of our SST.

When �1 � �2, we can show R��̂� � 0, and hence (3)
becomes precisely the standard Clausius relation. Note that
the heat current in the original relation has been replaced in
the extended relation (3) by the excess heat current, fol-
lowing the phenomenological proposals in [6,7]. Although
the excess entropy production h�ex

�̂ i
�̂ appears to depend on

paths (in the parameter space) defined by the protocol �̂,
(3) shows, rather strikingly, that it can be written as the
difference of the entropy S���, which is a function of �.
This is far from a mere consequence of definitions, and
represents a deep fact that NESS possess a nontrivial
thermodynamic structure.

For an infinitesimal protocol �̂ [14], we will show that
R��̂� � O��2��, where � is a dimensionless quantity
which characterizes the change �f � �i [15]. (We know
from examples [17] that this error estimate is optimal.)

The error term R��̂� for a general quasistatic protocol �̂
can be obtained by summing up the errors in infinitesimal
steps. In general O��� sums up to O�1�, thus giving
R��̂� � O��2�. There are, however, important cases where
we can set R��̂� � O��3�. In such a case, the extended
Clausius relation (3) is correct to O��2�, and hence goes
beyond the linear response theory. Take, for example, the
initial state �i as an equilibrium state with �1 � �2. If we
fix �1 and change only �2, the error O��2�� sums up to
R��̂� � O��3� (see also [10]).

Nonequilibrium entropy.—S��� in (3) was introduced as
the normalization factor in the representation (2). It is
interesting that this quantity plays the role of entropy in
an operational thermodynamic relation.

In [18], we shall show that this entropy has an interesting
symmetrized Shannon-like expression

 S��� � �
Z
d��st

���� log
���������������������������
�st
�����

st
���

��
q

: (4)

Note that the right-hand side becomes precisely the
Shannon entropy if �st

���� � �st
���

��. Since the equilibrium
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distribution has this symmetry, the entropy S��� ap-
proaches the Shannon entropy in the equilibrium limit.

The expression (4) shows that S��� reflects certain prop-
erties of the steady-state distribution �st

����. Of particular
interest is the long-range correlation [1], which should
manifest itself as an anomalous size dependence of S���
in the second order in �. As we have examined above, the
extended Clausius relation (3) allows one to compare the
nonequilibrium and the equilibrium entropies, and deter-
mine S��� in NESS with the precision of O��2�. One can
thus detect the long-range correlation experimentally by
means of calorimetry.

Extended Gibbs relation.—Our second major result is an
extension of the Gibbs relation.

Let � be an arbitrary reference. Using the energy con-
servation, and noting that

P2
k�1

�Jk��� � 0, we get

 �ex
�̂ ��̂���fW�̂��̂��H��0����0���H��T ����T ��g

���̂��̂�; (5)

where W�̂��̂� is the total work done by the external agent
who changes the parameters � (the temperatures of the
baths are changed without doing any work), and we defined
��̂��̂� � �

P2
k�1

R
T
0 dt��k�t� � ��Jex

k;�̂��̂; t�.
If the average h��̂i

�̂ happens to be negligible, then (5)
and the extended Clausius relation (3) imply

 dS �
dU
T
�
X
i

fi
T
d�i �O��

2��; (6)

where we wrote hW�̂i
�̂ � �

P
ifi���d�i, with � �

��1; �2; . . .�, and fi��� being the (generalized) force con-
jugate to �i. Remarkably, (6) is identical to the standard
Gibbs relation. We stress that all the terms in (6) can be
determined experimentally by measuring heat currents and
mechanical forces.

There may be several ways to make h��̂i
�̂ negligible. A

natural strategy that comes from the phenomenological
proposal in [8] is to consider a system with a fixed heat
current J. To be more precise, we consider a ‘‘source-drain
system,’’ in which the two baths have different characters.
Bath 1, which has a lower temperature and is coupled
efficiently to the system, is a ‘‘heat drain.’’ It helps the
system to get rid of extra energy and reach the NESS
rapidly. Bath 2, which has a higher fixed temperature, is
a ‘‘heat source.’’ It supplies a constant heat current J to the
system in average when the system is disturbed by an
external operation [19]. This means that hJex

2;�̂�t�i
�̂ is neg-

ligible. We now choose the reference as � � �1�0� so that
�1�t� � � � O���. Since hJex

1;�̂�t�i
�̂ � O���, we find that

h��̂i
�̂ is O��2� and hence negligible.

In a source-drain system, it is natural to characterize the
NESS by parameters (T, J, �), where T � 1=�1. (�2 is
determined from T, J, and �.) If we restrict ourselves to the
operations in which only the parameter � of the
Hamiltonian changes, (6) gives

 fi�T; J; �� � �
@
@�i

F�T; J; �� �O��2�; (7)

where the nonequilibrium free energy is defined by the
familiar relation F � U� TS. The relation (7) shows that
any thermodynamic force (including that exerted on a body
in a heat conducting fluid) in the linear nonequilibrium
regime is indeed a conservative force with the potential
F�T; J; ��. Although any physical quantity can be eval-
uated to O��� by using the linear response theory, (7)
may provide a novel point of view for analyzing thermo-
dynamic forces in the setting with a fixed current. For
example, (7) implies the Maxwell relation @fi=@�j �
@fj=@�i �O��2�, which may be confirmed experimentally
in suitable settings.

Derivation of main equality (3).—We consider an infini-
tesimal protocol �̂ [14]. Noting that ��̂y ��̂

y� � ���̂��̂�,

(1) implies W �̂��̂�e
��ex

�̂ ��̂�=2 �W �̂y��̂
y�e
��ex

�̂y
��̂y�=2

. By
integrating over all paths satisfying ��0� � �i, ��T � � �f ,
we get

 �st
�f
��f�hexp���ex

�̂ =2�i�̂�i;�f
� �st

�i
���i �hexp���ex

�̂y
=2�i�̂

y

��f ;�
�
i
;

(8)

which is our starting point. We later show that

 hexp���ex
�̂ =2�i�̂�i;�f

=hexp���ex
�̂y
=2�i�̂

y

��f ;�
�
i

� exp
�
�
h�ex

�̂ i
�̂
�i;�f
� h�ex

�̂y
i�̂
y

��f ;�
�
i

2
� R0��̂; �i;�f�

�
; (9)

with R0��̂; �i;�f� � O��3� �O��2��. We assume here
that various quantities can be expanded both in � and �.
We regard � as infinitesimal and omit O��2�.

Note that h�ex
�̂ i

�̂
�i;�f
�
R
T
0 dth�ex

�̂ �t�i
�̂
�i;�f

holds, and
h�ex
�̂ �t�i

�̂
�i;�f

attains non-negligible values only when t is
near 0, T , or T =2 (where the system is out of steady states
either by the imposed conditions or the operation). We can
therefore decompose the expectation value as

 h�ex
�̂ i

�̂
�i;�f
� h�ex

��i�
i
��i�
�i;st � h�

ex
��f �
i
��f �
st;�f
� h�ex

�̂ i
�̂
st;st: (10)

By substituting (9) and (10) into the identity (8), and
comparing the result with the representation (2), we get

 S��f� � S��i� �
1

2
fh�ex

�̂y
i�̂
y

st;st � h�
ex
�̂ i

�̂
st;stg � R��̂�; (11)

where R��̂� � R0��̂; �i;�f� � ~R��i;�i� � ~R��f ;�f�. Since
R��̂� � 0 if � � 0, we must have that R��̂� � O��2��.
Noting the symmetry h�ex

�̂y
i�̂
y

st;st � �h�
ex
�̂ i

�̂
st;st [18] we get

(3) for an infinitesimal process.
Derivation of (9).—We regard (only in this deriva-

tion) time-independent H��0� as the Hamiltonian of the
system, and interpret the force from H��t� �H��0� as an
‘‘external force.’’ Then the energy balance implies
H��0����T ���H��0����0���W��̂� �

P2
k�1

R
T
0 dtJ

ex
k ��̂; t�

whereW��̂� is the total work done by the external force. By
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defining ~��̂��̂� � ��̂��̂� � �W��̂�, we have �ex
�̂ ��̂� �

~��̂��̂� � �fH��0����0���H��0����T ��g as in (5).
To simplify notation, we drop �̂ or �̂y, and abbreviate

the expectations h	 	 	i�̂�i;�f
and h	 	 	i�̂

y

��f ;�
�
i

as h	 	 	i and

h	 	 	iy, respectively. We make use of the cumulant expan-
sion loghe��ex=2i � �h�exi=2� h�ex; �exi=8� 	 	 	 ,
where h�ex; �exi � h��ex�2i � h�exi2. Since
H��0����0���H��0����T �� is constant in the present aver-
age, we have h�ex; �exi � h ~�; ~�i. Similar identities also
hold for higher order cumulants (see, e.g., [11]).

Let us denote by K the left-hand side of (9). The cumu-
lant expansion yields

 logK��
h�exi�h�exiy

2
�
h ~�; ~�i�h ~�; ~�iy

8
�O� ~�3�:

(12)

To evaluate the second term, we observe that

 h ~�; ~�i � h ~�; ~�iy � h ~�; ~�ieq � h ~�; ~�iyeq �O� ~�
3�;

(13)

where h	 	 	ieq and h	 	 	iyeq are averages in the corresponding
equilibrium dynamics with the static Hamiltonian H and a
common �. But the time-reversal symmetry in equilibrium
dynamics implies h ~�; ~�ieq � h ~�; ~�iyeq. Since � � O���
[16] and �W � O���, we have ~� � O��� �O���. Thus
(12) and (13) imply the desired (9).

Discussions.—We treated a general classical model of
heat conduction, and derived natural nonequilibrium ex-
tensions of the Clausius and the Gibbs relations. The mere
existence of a consistent operational thermodynamics (i.e.,
SST) may be of great importance, but the way the exten-
sion has been done may also be quite suggestive.

The extended Clausius relation (3) and the associated
microscopic expression (4) of the entropy form a theoreti-
cal core of the present work. They may provide us with a
clue to developing the statistical mechanics for NESS that
work beyond the linear response regime.

It is also suggestive that we obtained the extended
Gibbs relation (6) in a special setting with ‘‘source’’ and
‘‘drain,’’ in which the heat current is fixed. There is a
possibility that this special setting is necessary for uncov-
ering universal statistical properties of heat conducting
systems, as such properties may be hidden in other set-
tings. In this connection, it is exciting to explore implica-
tions of the ‘‘nonequilibrium order parameter’’ defined as
��T; J; �� � @F�T; J; ��=@J [8].

We hope that the present results trigger further nontrivial
developments in nonequilibrium physics.
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Netočný, J. Stat. Phys. 110, 269 (2003).

[6] Y. Oono and M. Paniconi, Prog. Theor. Phys. Suppl. 130,
29 (1998).

[7] R. Landauer, Phys. Rev. A 18, 255 (1978).
[8] S. Sasa and H. Tasaki, J. Stat. Phys. 125, 125 (2006).
[9] T. Hatano and S. Sasa, Phys. Rev. Lett. 86, 3463 (2001).

[10] D. Ruelle, Proc. Natl. Acad. Sci. U.S.A. 100, 3054 (2003).
[11] T. S. Komatsu, N. Nakagawa, S. Sasa, and H. Tasaki,

arXiv:0805.3023.
[12] T. S. Komatsu and N. Nakagawa, Phys. Rev. Lett. 100,

030601 (2008).
[13] To be precise, we define expectations with various initial

and final conditions as follows. We omit �̂ for simplic-
ity. hfi�i ;�f

� f�st
�f
��f�g

�1
R

��0���i ;��T ���f
D�̂W ��̂�f��̂�,

hfi�i ;st �
R

��0���i
D�̂W ��̂�f��̂�, hfist;�f

� f�st
�f
��f�g

�1
R
��T ���f

D�̂�st
�i
��i�W ��̂�f��̂�, and hfist;st �R

D�̂�st
�i
��i�W ��̂�f��̂�. Here the normalization fac-

tors are simplified by assuming that �st
�f
��f� �R

��0���i ;��T ���f
D�̂W ��̂� for any �i.

[14] An infinitesimal protocol �̂ is defined by ��t� � �i for
t 2 �0;T =2� and ��t� � �f for t 2 �T =2;T �, where
�f � �i is infinitesimal.

[15] Let �� be the typical change in the inverse temperature,
andW be the typical work done according to the change of
�. Then �� E0��� �W, where E0 � Jmax�r (see [16])
is a typical energy scale.

[16] We assume that the typical current in the system is J�
�	� when there is a difference 	� in the inverse tem-
peratures of the baths. Since the average of � is vanishing,
we examine its behavior when the system is disturbed into
a nontypical state. Then one expects a large current of the
order Jmax � ��. Since this decays rapidly within the
relaxation time �r, we see �� 	�Jmax�r � �Jss�r � �,
where Jss � �	� is the current in the steady state.

[17] G. C. Paquette (private communication).
[18] T. S. Komatsu, N. Nakagawa, S. Sasa, and H. Tasaki,

report (to be published).
[19] Although not all heat baths act as a ‘‘heat source,’’ one can

design various sources [without violating the basic as-
sumption (1)] which keeps the averaged current almost
constant when the parameters are changed. An example is
a bath with a very high temperature coupled very weakly
to the system [18].

PRL 100, 230602 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JUNE 2008

230602-4


