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A universal quantum work relation is proved for isolated time-dependent Hamiltonian systems in a
magnetic field as the consequence of microreversibility. This relation involves a functional of an arbitrary
observable. The quantum Jarzynski equality is recovered in the case this observable vanishes. The Green-
Kubo formula and the Casimir-Onsager reciprocity relations are deduced thereof in the linear response
regime.
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Nonequilibrium work relations have recently attracted
much interest [1,2]. They provide relations for the work
dissipated in time-dependent driven systems, indepen-
dently of the form of the driving. They are of great interest
to evaluate free energies under general nonequilibrium
conditions and they provide new methods to study nano-
systems. In the nanoscopic world, the extension of these
classical relations to quantum systems is of particular
importance and different approaches have been proposed.

A first scheme was introduced by Kurchan [3]. In this
framework, a measurement of the system state is per-
formed at the initial time. In the sequel, the system is
perturbed by a time-dependent Hamiltonian before per-
forming another measurement at the final time. The ran-
dom work performed on the system is associated with the
energy difference between the final and initial eigenstates.
This setup leads to the quantum extension of Jarzynski
equality and Crooks fluctuation theorem [4–7]. Another
possibility is to introduce a quantum work operator which
measures the energy difference [8], in which cases quan-
tum corrections to the fluctuation theorem must be taken
into account. On the other hand, quantum fluctuation the-
orems have been obtained in suitable limits where the
dynamics admits a Markovian description, allowing, in
particular, the applications to nonequilibrium steady states
[9–14]. Yet, the connection between the quantum work
relations and response theory is still an open question even
in the linear regime.

The purpose of the present Letter is to derive a new type
of work relations which involves a functional of an arbi-
trary observable. This generating functional can be related
to another functional but averaged over the time-reversed
process. This new work relation turns out to be of great
generality since we can recover known results such as
Jarzynski equality as special cases. Furthermore, this uni-
versal work relation allows us to formulate the response
theory, to derive the quantum linear response functions, the
quantum Green-Kubo relations [15,16], as well as the
Casimir-Onsager reciprocity relations [17,18] in the re-
gime close to the thermodynamic equilibrium.

Functional symmetry relations.—We suppose that the
system is described by a Hamiltonian operator H�t;B�

which depends on the time t and the magnetic field B.
The time-reversal operator � is an antilinear operator such
that �2 � I and which has the effect of changing the sign
of all odd parameters such as magnetic fields:

 �H�t;B�� � H�t;�B�: (1)

We first introduce the forward process. The system is
initially in thermal equilibrium at the inverse temperature
� � 1=kBT. The initial state of the system is described by
the canonical density matrix

 ��0� �
e��H�0;B�

Z�0�
; (2)

where the partition function is given in terms of the corre-
sponding free energy F�0� by Z�0� � tre��H�0;B� �

e��F�0�. Starting from this equilibrium situation at the
initial time t � 0, the system evolves until some final
time t � T under the Hamiltonian dynamics. The corre-
sponding forward time evolution is defined as

 i@
@
@t
UF�t;B� � H�t;B�UF�t;B�; (3)

with the initial condition UF�0;B� � I [19]. In the
Heisenberg representation, the observables evolve accord-
ing to

 AF�t� � UyF�t�AUF�t�; (4)

which also concerns the time-dependent Hamiltonian

 HF�t� � UyF�t�H�t;B�UF�t�: (5)

The average of an observable is thus obtained from

 hAF�t�i � tr��0�AF�t�: (6)

We note that the dependence on the magnetic field is
implicit in these expressions.

The backward process is introduced similarly but in the
magnetic field reversed. The system is perturbed according
to the time-reversed protocol H�T � t;�B�, starting at the
initial time t � 0 from the density matrix

 ��T� �
e��H�T;�B�

Z�T�
; (7)
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where the free energyF�T� is given in terms of the partition
function according to Z�T� � tre��H�T;�B� � e��F�T�. The
system ends at time t � T with the HamiltonianH�0;�B�.
The evolution operator of the backward process is defined
as

 i@
@
@t
UR�t;B� � H�T � t;B�UR�t;B�; (8)

with the initial condition UR�0;B� � I [19], and is related
to the one of the forward process by the following:

Lemma.—The forward and backward time evolution
operators are related to each other according to

 �UF�T � t;B�U
y
F�T;B�� � UR�t;�B�; (9)

where t is an arbitrary time 0 � t � T.
This lemma is proved by first substituting T � t for t in

Eq. (3) to get

 � i@
@
@t
UF�T� t;B��H�T� t;B�UF�T� t;B�: (10)

Multiplying this equation byUyF�T;B�� from the right and
by � from the left, we find

 i@
@
@t

�UF�T � t;B�U
y
F�T;B�� � H�T � t;�B��UF�T � t;B�U

y
F�T;B��; (11)

where we used the antilinearity �i � �i� of the time-
reversal operator and its further property (1). This shows
that the expression �UF�T � t;B�U

y
F�T;B�� obeys the

same evolution Eq. (8) as UR�t;�B�. Since they also sat-
isfy the same initial condition, �UF�T;B�UyF�T;B�� �
UR�0;�B� � I, we have proven Eq. (9) QED.

With this lemma, we can now demonstrate the follow-
ing:

Theorem.—Let us consider an arbitrary time-
independent observable A with a definite parity under
time reversal: �A� � �AA, with �A � �1. It satisfies
the following functional relation:

 he
R
T

0
dt��t�AF�t�e��HF�T�e�H�0�iF;B

� e���Fhe�A
R
T

0
dt��T�t�AR�t�iR;�B; (12)

where ��t� is an arbitrary function, while the subscripts F
and R stand for the forward or backward protocol, respec-
tively. �F � F�T� � F�0� is the difference of the free
energies of the initial equilibrium states (7) and (2) of the
backward and forward processes.

In order to prove Eq. (12), we first consider the quantity
AF�t�, which can be written as

 AF�t� � UyF�t�AUF�t�

� UyF�T�UF�T�U
y
F�t�AUF�t�U

y
F�T�UF�T�

� �AU
y
F�T��AR�T � t��UF�T�; (13)

where we have inserted the identity UyF�T�UF�T� � I to go
at the second equality. At the third equality, we inserted
�2 � I between the evolution operators and we used
�A� � �AA along with Eq. (9). The connection is thus
established with the backward process. Integrating over
time with an arbitrary function ��t� and taking the expo-
nential of both sides, the previous expression becomes

 

exp�
Z T

0
dt��t�AF�t�� � UyF�T�� exp

�

�A
Z T

0
dt

� ��T � t�AR�t�
�

�UF�T�; (14)

after the change of integration variables t! T � t in the
right-hand side.

Starting from the left-hand side of Eq. (12), we get

 

tr��0� exp�
Z T

0
dt��t�AF�t�� exp���HF�T�	 exp��H�0�	 �

1

Z�0�
tr exp��A

Z T

0
dt��T � t�AR�t��� exp���H�T;B�	�

�
Z�T�
Z�0�

tr exp��A
Z T

0
dt��T � t�AR�t����T�

� e���Fhexp��A
Z T

0
dt��T � t�AR�t��iR;�B: (15)

We used the invariance of the trace over cyclic permuta-
tions as well as the exponential of Eq. (13) at the first
equality. In the second equality, we introduced the equi-
librium density matrix (7) which is precisely the initial
condition of the backward process. To obtain the last
equality, we used that the partition functions have been

expressed in terms of the corresponding free energies. This
completes the proof of the theorem QED.

We notice that related results have previously been
considered in the restricted case where there is no change
in free energy �F � 0 [20,21]. The present theorem allows
us to recover, in particular, the quantum Jarzynski equality
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as a special case of Eq. (12) if � � 0:

 he��HF�T�e�H�0�iF;B � e���F: (16)

The factor inside the bracket can indeed be interpreted in
the quantum setting in terms of the work performed on the
system during the forward process [3,4,6,9] in spite of the
noncommutativity of the energy operators HF�T� andH�0�
and thanks to the protocol with von Neumann quantum
measurements of the energy at the initial and final times. It
is only in the classical limit that both energies commute
and the classical work can be formed as Wcl � �HF�T� �
H�0�	cl. In this case, both exponentials in the left-hand side
of the relation (12) becomes exp���Wcl� which is the
classical version of this relation.

Response theory.—We can obtain different correlation
functions by taking functional derivatives of the relation
(12) with respect to the arbitrary function ��t�. In this way,
we can obtain the expression of linear response theory
from the generalized symmetry relation (12). For this
purpose, we consider a perturbation of the form

 H�t� � H0 � X�t�B; (17)

where the perturbation X�t� is such that X�t� � 0 for t � 0
and X�t� � 0 for T � t. The observable B is here arbitrary
and should not be confused with the magnetic field B. In
order to obtain the linear response of an observable A with
respect to the perturbation �X�t�B, we take the functional
derivative of Eq. (12) with respect to ��T�, around � � 0.
This yields

 hAF�T�e��HF�T�e�H0iF;B � �AhAR�0�iR;�B � �AhAieq;�B;

(18)

where we used that �F � 0 since X�0� � X�T� � 0. Since
the reversed process also starts at equilibrium, the average
in the right-hand side is an equilibrium average, albeit with
a reversed magnetic field. Nevertheless, we have that
�AhAieq;�B � hAieq;B by using time reversal. We now
have to calculate the exponentials of the initial and final
Hamiltonians. Since, in the Heisenberg representation, the
total time derivative of the Hamiltonian equals its partial
derivative, dHF=dt � �@H=@t�F, we can write

 exp���HF�T�	 � exp����H0 
 E�	 (19)

with

 E �
Z T

0
dt
�
@H
@t

�
F
� �

Z T

0
dt _X�t�BF�t�

�
Z T

0
dtX�t� _BF�t�; (20)

where the last equality follows from an integration by
parts. We now use the expression
 

exp���P
Q�	exp���P��1

Z �

0
du

�exp�u�P
Q�	Qexp��uP�;

(21)

which can be proved by differentiating with respect to �.
To first order in Q, we may neglect Q in the last exponen-
tial function, exp�u�P
Q�	. Taking P � �H0 and Q �
�E and developing to first order in X, we get

 e��HF�T�e�H0�1�
Z T

0
dtX�t�

Z �

0
due�uH0 _B�t�euH0


O�X2�

�1�
Z T

0
dtX�t�

Z �

0
du _B�t
 i@u�
O�X2�;

where B�t� � exp�iH0t=@�B exp��iH0t=@� since, at first
order in the driving force, the time evolution proceeds
under the unperturbed Hamiltonian H0. Inserting this ex-
pansion into Eq. (18) and after some manipulations using
the time invariance of correlation function as well as the
KMS-like property �A � A�i@��� [22], we finally find

 hAF�T�iB � hAieq;B 

Z T

0
dtX�T � t��AB�t� 
O�X

2�;

(22)

with the response function

 �AB�t� �
Z �

0
duh _B��i@u�A�t�ieq;B: (23)

Equations (22) and (23) are the well-known expressions of
linear response theory in the canonical ensemble, also
known as the Green-Kubo formula [15,16]. The Casimir-
Onsager reciprocity relations for the conductivities [17,18]
are obtained by taking A � J�=V and _B � J� in terms of
the current J� �

P
nen _xn� and the volume V, in which

case the time-reversal symmetry implies ����t;B� �
����t;�B� and ����!;B� � ����!;�B� for the tensor
of conductivities ����!;B� �

R
1
0 dte

i!t����t;B�.
Higher-order terms in the expansion can be obtained as
well.

Conclusions.—In this Letter, we have obtained a uni-
versal quantum work relation which involves arbitrary
observables at arbitrary times. This result relates an aver-
age over the forward process ponderated by the quantum
analogue of the work to an average over the reversed
process. By taking functional derivatives, we can obtain
relations for arbitrary correlation functions, which are the
consequence of microreversibility. In the simplest case, it
can be used to recover the well-known Jarzynski equality.
On the other hand, we can also straightforwardly derive
from the universal relation the linear response theory of an
arbitrary observable. In this regard, this relation unifies in a
common framework the work relations and the response
theory, thereby opening the possibility to obtain further
general relations which are valid not only close to equilib-
rium but also in the far-from-equilibrium regime.
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