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We derive the Schrödinger equation for a spinless charged particle constrained to move on a curved
surface in the presence of an electric and magnetic field. The particle is confined on the surface using a
thin-layer procedure, which gives rise to the well-known geometric potential. The electric and magnetic
fields are included via the four potential. We find that there is no coupling between the fields and the
surface curvature and that, with a proper choice of the gauge, the surface and transverse dynamics are
exactly separable. Finally, we derive an analytic form of the Hamiltonian for spherical, cylindrical, and
toroidal surfaces.
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Two dimensional (2D) curved systems are extensively
investigated to study new physical effects that depend both
on the curvature of the systems and on the external electric
and magnetic fields applied, such as Aharonov-Bohm os-
cillations [1], formation of Landau levels [2,3] and quan-
tum Hall effect [4]. Nanostructures with a great variety of
novel geometries are now experimentally produced. At the
same time, sources of high magnetic fields are accessible.
Hence, a rigorous theoretical understanding of the dynam-
ics under such condition is needed. Dynamics on curved
surfaces has become particularly important in condensed
matter since the synthesis of curved graphene systems,
such as fullerenes and carbon nanotubes. The fullerenes
may show effects induced by the magnetic field on the
photocurrent for an intensity below 1 T [5]. The carbon
nanotube radius is usually too small to allow for significant
effects induced by experimentally accessible magnetic
fields. However field-induced effects may become impor-
tant in multiwalled carbon nanotubes, where the radius is
of the order of some tens of nanometers and a field of tens
of Tesla is sufficient to see effects on the energy band gap
[6,7]. New techniques have also been developed to obtain
semiconductor tubes that have a radius ranging from tens
of nanometers up to microns. With such dimensions, fields
weaker that 10 T can show significant effects on the
magnetoresistance [8,9]. These successes on the experi-
mental side push for a theoretical comprehension of the
quantum carrier mechanics on curved structures immersed
in magnetic fields.

Historically, two methods have been employed to study
curved systems: a method due to DeWitt [10] that ap-
proaches the problem by studying the dynamics as fully
2D and another due to da Costa [11] that derives the
Schrödinger equation starting from the three dimensional
(3D) one and then reduces it to a 2D equation by a con-
fining procedure. If no magnetic field is applied the proce-
dure of da Costa is widely used and accepted [12,13]. This
procedure appears to be the most rigorous and physically
sound for curved nanostructures, since a DeWitt-like 2D

Lagrangian approach does not allow for the inclusion of an
arbitrarily oriented 3D magnetic field but only perpendicu-
lar to the surface. Moreover, these structures are 2D sys-
tems embedded in a 3D space, and the da Costa approach
describes exactly this situation. In spite of these consider-
ations, a rigorous approach has not been completely devel-
oped including the magnetic field. For example, studying
cylindrical geometries, the magnetic field parallel to the
axis was introduced through the boundary conditions of the
wave-function [14], on the other hand only the component
of the field perpendicular to the surface has been consid-
ered in the Schrödinger equation [4,9,14]; also for toroidal
surfaces the same approach has generally been adopted
[15,16], while the simple geometry of the sphere does not
allow to distinguish between the different approaches
[2,3,17]. Nevertheless, the da Costa method is recognized
as the one to be employed [18], but an analytical expres-
sion for the Schrödinger equation including the magnetic
field has not been derived yet.

In this Letter, we follow the procedure of da Costa
including the effect of the magnetic field via the vector
potential A and the electric field via the scalar potential V.
We shall derive analytically a Schrödinger equation valid
for any 2D geometry, that describes in the most appropriate
way real curved nanostructures with an electric and mag-
netic field applied, given the above considerations. We
shall show that there is no coupling between the field and
the surface curvature and that the dynamics on the surface
is decoupled from the transverse one with a proper choice
of the gauge, without approximations.

We start the derivation writing the Schrödinger equation
with minimal coupling with the electromagnetic four-
potential and using spatial covariant derivatives. Here
and in the following i, j, k stand for the spatial indices of
the flat Euclidean 3D space and assume the values 1, 2, 3.
Tensor covariant and contravariant components are used
and Einstein summation convention is adopted. We define
the gauge covariant derivative Dj � rj �

iQ
@
Aj, where Q

is the charge of the particle and Aj the covariant compo-
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nents of the vector potential A. The covariant derivativerj
is defined as rjvi � @jv

i � �ijkv
k, where vi are the con-

travariant components of a 3D vector field v, �ijk are the
Christoffel symbols and @j is the derivative with respect to
the spatial variable qj. The resulting equation is

 i@
@
@t
 � �

@
2

2m
GijDiDj �QV ; (1)

where the metric tensor Gij, and its inverse Gij, has been
introduced to take into account the geometry of the space.
Defining the scalar potential A0 � �V, we can define a
gauge covariant derivative for the time variable as D0 �
@t � iQA0=@, and rewrite Eq. (1) as

 i@D0 � �
@

2

2m
GijDiDj : (2)

The gauge invariance of the above equation can be easily
demonstrated with respect of the following gauge trans-
formations:

 Aj ! A0j � Aj � @j�; A0 ! A00 � A0 � @t�;

 !  0 �  eiQ�=@;
(3)

where � is a scalar function. We expand Eq. (2) by cova-
riant calculus, obtaining
 

i@D0 �
1

2m

�
�

@
2����
G
p @i�

����
G
p

Gij@j � �
iQ@����
G
p @i�

����
G
p

GijAj� 

� 2iQ@GijAj@i �Q2GijAiAj 
�
; (4)

where G � det�Gij�. The above equation is the covariant
Schrödinger equation for a generic 3D curvilinear coordi-
nate system, when electric and magnetic fields are applied.
Note that no gauge has been chosen, but the general
expression A � �A1; A2; A3� valid for any gauge and any
magnetic field will be maintained through the paper until
differently stated.

Before applying the thin-layer procedure described by
da Costa [11] to confine the particle on the surface, the
coordinate system has to be described. The system descrip-
tion is analogous to the one given in Ref. [11]. The surface
S is parametrised by r � r�q1; q2�, where r is the position
vector of an arbitrary point on the surface. The 3D space in
the immediate neighborhood of S can be parametrised as
R�q1; q2; q3� � r�q1; q2� � q3n�q1; q2�, where n�q1; q2� is
the unit vector normal to S. For the sake of clarity, we
introduce the indices a, b to indicate the surface parame-
ters, which hence assume the values 1,2. The relation
between the 3D metric tensor Gij and the 2D induced
one gab � @a ~r � @b ~r is

 Gab � gab � ��g� ��g�
T�abq3 � ��g�

T�abq
2
3;

Ga3 � G3a � 0; G33 � 1;
(5)

where �ab is the Weingarten curvature matrix for the
surface [11,19]. The structure of the metric tensor given
in Eq. (5) suggests to separate the Schrödinger Eq. (4) in a

surface part for a, b � 1, 2 and a normal part. Besides, a
confining potential V��q3� is assumed to localize the par-
ticle on the surface S, where � is a parameter which
measures the strength of the confinement. We follow a
well-established thin-layer method [11,18]. Since the aim
of the procedure is to obtain a surface wave-function
depending only on (q1, q2), we introduce a new wave-
function ��q1; q2; q3� � �S�q1; q2��n�q3�. The separabil-
ity is an hypothesis and shall be verified. The condition of
conservation of the norm gives the relation:

  �q1;q2;q3�� �1�Tr���q3�det���q2
3�
�1=2��q1;q2;q3�:

(6)

First, we substitute expression (6) into Eq. (4). Then we
take into account the effect of the potential V��q3�: in the
limit of confinement, the wave-function is localized on S
by two step potential barriers on both sides of the surface.
This means that the value of the wave-function is different
from zero only in a close neighborhood of S. We can thus
perform the limit q3 ! 0 in the Schrödinger equation. The
final result is
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1

2m

�
�

@
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p @a�

���
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p
gab@b�� �

iQ@���
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p @a�

���
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p
gabAb��

� 2iQ@gabAa@b��Q
2�gabAaAb � �A3�
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� @
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2�� iQ@�@3A3��� 2iQ@A3�@3��
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��
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2
Tr���

�
2
� det���

�
�
�
� V��q3��; (7)

where g � det�gab� and all the components of A and its
derivative are calculated at q3 � 0. From the above equa-
tion, we can state the first fundamental evidence of this
Letter: There is no coupling between the magnetic field
and the curvature of the surface, independently of the shape
of the surface, of the field B and of the gauge. In fact, in
Eq. (7) terms mixing Aj and the curvature matrix �ab do
not appear. This is in contrast with that obtained in
Ref. [18], where the apparent coupling between the field
and the curvature is due to the choice of a particular gauge
in the derivation of the formula. Note that in Eq. (7) the
terms containing both gab and Ab derive from the covari-
ance of Eq. (4) and that the well-known geometric potential
VS appears [11]:

 VS�q1; q2� � �
@

2

2m

��
1

2
Tr���

�
2
� det���

�
; (8)

where the first term is the square of the mean curvature and
the second one is the Gaussian curvature.

We next verify that the limiting procedure preserves the
gauge invariance of the resulting equation. Defining a new
metric tensor ~G as

 

~G �
g11 g12 0
g21 g22 0
0 0 1

0
@

1
A; (9)
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Eq. (7) can be rewritten in a compact form:

 i@D0� � �
@

2

2m
~Gij ~Di

~Dj�� VS�� V��q3��; (10)

so that the invariance with respect to the gauge transfor-
mations (3) is evident in the above expression.

Finally, we demonstrate the separability of the dynamics
on the surface and perpendicular to the surface, that is our
work hypothesis. In Eq. (7) only one term,
�A3�q1; q2; 0�@3��, couples the dynamics along q3 with
the dynamics on S. Since we have shown the gauge invari-
ance of Eq. (10), we can now impose a gauge such to
cancel the component A3 of the vector potential, cancelling
the coupling term. Applying the gauge transformations (3),
the best suitable choice for � is

 ��q1; q2; q3� � �
Z q3

0
A3�q1; q2; z�dz: (11)

We obtain A03 � 0, @3A
0
3 � 0 and having fixed the lower

limit of integration to 0, in the limit q3 ! 0, A1 and A2

remain unchanged. After the gauge transformation we can
separate the Schrödinger equation in two independent
equations:

 i@@t�n � �
@

2

2m
�@3�

2�n � V��q3��n; (12)

 

i@@t�S�
1

2m

�
�

@
2���
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���
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p
gab@b�S��

iQ@���
g
p @a�

���
g
p
gabAb��S

�2iQ@gabAa@b�S�Q2gabAaAb�S

�

�VS�S�QV�S; (13)

where we have made explicit both the confining potential
and the electric potential. Expression (12) is the 1D
Schrödinger equation for a particle confined by the poten-
tial V�, while expression (13) describes the dynamics of a
particle bounded to the surface under the effect of electric
and magnetic fields. Note that the separation of the dy-
namics has been obtained analytically without any ap-
proximation. At this point we can state the second
fundamental conclusion of this paper: With a proper choice

of the gauge, the dynamics on the surface and the trans-
verse dynamics are decoupled. In Ref. [18] this separability
is not evident because of the nonoptimal choice of the
gauge.

In the following we give some examples of curved
surfaces of typical nanostructures, with a homogeneous
magnetic field applied. The sphere is the simplest curved
geometry to be investigated. Given a sphere of radius r and
a constant magnetic field B in a given direction, the spheri-
cal coordinate system (�, �, �) is set with the polar axis
along the direction of the field, as shown in panel (a) of
Fig. 1. The most suitable vector potential, determined by
the gauge condition (11) for the spherical geometry is
�A�; A�; A�� � �0;

1
2Br

2sin2�; 0� and the corresponding
Schrödinger equation is
 

i@@t�S �
1

2m

�
�
@

2

r2

�
1

sin�
@��sin�@��S� �

1

sin2�
@2
��S

�

� iQ@B@��S �
1

4
Q2B2r2sin2��S

�
: (14)

Note that for a sphere VS � 0. In literature, a number of
papers appear investigating the effect of a magnetic field
applied to a sphere [2,3,5,17]. Given the simple geometry
of the sphere, the Schrödinger equation employed in those
papers has the correct form.

A very popular geometry is the cylindrical one, given the
extensive investigation on carbon nanotubes and semicon-
ductor nanotubes [1,4,7–9,14]. Given a cylindrical coor-
dinate system (�, y, �), a field B applied to a cylinder of
radius r can always be decomposed in a component B0

parallel to the axis and a component B1 perpendicular to
the axis at � � 0. The system is shown in panel (b) of
Fig. 1. The proper vector potential determined by Eq. (11)
is �A�; Ay; A�� � �

1
2 r

2B0; rB1 sin�; 0�. We can then calcu-
late the Schrödinger equation
 

i@@t�S �
1

2m

�
�@2

�
1

r2 @
2
��S � @

2
y�S

�
� iQ@B0@��S

� 2iQ@rB1 sin�@y�S

�Q2r2

�
1

4
B2

0 � B
2
1sin2�

�
�S

�
�

@
2

8mr2 �S: (15)

FIG. 1 (color online). (a) A spherical surface of radius r and its coordinate system (�, �, �). The coordinate system is chosen so that
the magnetic field B is along the polar direction. (b) A cylindrical surface of radius r and its coordinate system (�, y, �). The magnetic
field B and its component B0 parallel to the axis and B1 perpendicular to the axis at � � 0 are shown. (c) A toroidal surface and its
coordinate system (�, �, q). R is the distance from the center of the tube to the center of the torus, r is the radius of the tube. The
magnetic field B and its component B0 perpendicular to the torus plane and B1 laying in the torus plane are shown.
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Several theoretical studies on the effect of the magnetic
field applied to 2D cylindrical systems have been carried
out [4,14]. The most widely used procedure to address the
problem is to write the Schrödinger equation obtained with
the 2D Laplacian generalized including the 2D vector
potential: the result is not rigorous, because it does not
take into account the effect of the component B0. Also the
surface potential VS is not obtained, but this reduces only to
a constant shift in energy, if the radius of the tube is
constant and no bending is considered [13].

A toroidal surface is more interesting both from the
theoretical and experimental point of view: for ex-
ample, localizations are predicted with and without an
applied magnetic field as a consequence of the shape of

the geometric potential and of the effect of the field [16],
also band-gap modulations are expected [20]. The par-
ticular topology is a test bed for models on curved
surfaces [15,18]. The reference system (�,�, q), described
in panel (c) of Fig. 1, can always be chosen so that a
field in an arbitrary direction can be described with a
component B1 in the torus plane and a component B0

perpendicular to the torus plane. R is the distance from
the center of the tube to the center of the torus, r is the
radius of the tube. Using Eq. (11), we can calculate
the vector potential most suitable for a toroidal surface,
that is �A�; A�; Aq� � �

1
2B1r sin��R cos�� r�; 1

2W���	
�B0W��� � B1r sin� cos��; 0�, where W����R�rcos�.
The Schrödinger equation is obtained from Eq. (13):

 i@@t�S �
1

2m

�
�
@

2

r2 @
2
��S �

@
2 sin�
rW���

@��S �
@

2

W2���
@2
��S �

�
@R

2rW���

�
2
�S �

iQ@B1 sin��R cos�� r�
r

@��S

�
iQ@�B0W��� � B1r sin� cos��

W���
@��S � iQ@B1 sin� sin�

R2 � 2rR cos�
2rW���

�S �
Q2

4
��B1W��� sin��2

� �B0W����2 � �B1r sin��2 � 2B0B1rW��� sin� cos�� �B1R sin� sin��2��S

�
: (16)

It is important to note that the above expression contains all
the terms influencing the dynamics and it has been ob-
tained exactly without any approximation. In this case the
geometric potential, namely, the fourth term of the right-
hand side of the above equation, cannot be neglected since
it is not constant on the surface. Moreover, the seventh term
cannot be obtained applying the 2D Lagrangian approach:
actually, it takes into account the effect of the component
of the field laying on the torus plane, that generates a flux
through the sections of the torus. Differences can be also
noted with respect to the corresponding expression in
Ref. [18]: the discrepancies are to be attributed to the
approximations performed in that paper.

In conclusion, we have rigorously developed a general
Schrödinger equation valid for any 2D curved structure
when magnetic and electric fields are applied. We have
shown that there is no coupling between the surface cur-
vature and the magnetic field. Moreover, we have demon-
strated that, with a proper choice of the gauge, the
dynamics on the surface is analytically decoupled from
the transverse one. To show the effectiveness of the
method, we have calculated analytically the complete
Schrödinger equation for a charged particle bounded to
the surface of a sphere, of a cylinder and of a torus, with a
homogeneous magnetic field applied in an arbitrary
direction.
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