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We apply the configuration-interaction method to calculate the spectra of two-component Fermi
systems in a harmonic trap, studying the convergence of energies at the unitary interaction limit. We
find that for a fixed regularization of the two-body interaction the convergence is exponential or better in
the truncation parameter of the many-body space. However, the conventional regularization is found to
have poor convergence in the regularization parameter, with an error that scales as a low negative power of
this parameter. We propose a new regularization of the two-body interaction that produces exponential
convergence for systems of three and four particles. We estimate the ground-state energy of the four-
particle system to be �5:045� 0:003�@!.
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The study of cold trapped atomic condensates has be-
come a rich field experimentally. By providing a strongly
interacting system that is well defined, it also offers phys-
icists an unprecedented opportunity to assess theoretical
techniques that cross the boundaries of disciplines. In the
unitary limit of infinite scattering length, the only dimen-
sional scale of the problem is fixed by the harmonic trap
frequency. Systematic studies have begun on small systems
using fixed-node Monte Carlo [1–3] and density functional
methods [4]. Remarkably, the exact wave functions and
energies of the A � 3 system are known, calculated by
solving a single transcendental equation [5]. Here we study
the trapped condensate in the context of the configuration-
interaction (CI) method, widely used in atomic [6], mo-
lecular [7], and nuclear [8] spectroscopy. In particular, we
investigate the convergence of the condensate energies in
the CI method with respect to a regularization parameter of
the two-body interaction. We find that a simple regulari-
zation scheme that renormalizes the interaction produces
slow convergence of the three- and four-particle spectra.
We introduce a new effective interaction that gives expo-
nential convergence.

Hamiltonian.—The cold trapped atom system is mod-
eled by the Hamiltonian
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V0��ri � rj�; (1)

where A is the number of atoms, ! is the trap frequency,
and V0 is the interaction strength. We have two-component
fermionic systems in mind, which controls the symmetry
of the allowed states. The interaction is represented as a �
function (contact interaction) but as we shall see below it
requires a regularization. Here we focus on an attractive
contact interaction in the unitary limit.

Two-particle problem.—The two-particle system (A �
2) is separable in center of mass and relative coordinates
r � r2 � r1. The center of mass Hamiltonian describes an

harmonic oscillator with frequency ! and mass 2m, while
the relative-coordinate Hamiltonian is Hrel � �

@
2

2�r
2
r �

1
2�!

2r2 � V0��r� with reduced mass � � m=2. The
two-particle energies are given by E � �2N �L�
3=2�@!� "nl, where N ;L and n; l are the radial quantum
number and angular momentum of the center of mass and
relative motion, respectively. The energies "nl are the
eigenvalues of Hrel, and may be derived from the boundary
condition at the origin imposed by the unitary limit inter-
action [9]. The contact interaction affects only the l � 0
partial waves, and shifts each s-wave oscillator energy
down by one unit of @! [10]. Thus we have

 "nl � �2n� l� 3=2� �l;0�@!; n � 0; 1; 2; . . . : (2)

Renormalized contact interaction.—In the CI method,
the contact interaction in Eq. (1) must be treated explicitly.
However, a �-function interaction in three dimensions
must be regularized. We shall do this by truncating the
space of relative-coordinate wave functions to a q subspace
of the lowest q� 1 oscillator l � 0 wave functions (see
also Ref. [11]). Within the truncated space the relative-
coordinate Hamiltonian can be written as

 �Hrel�
�q�
n;n0 � �2n� 3=2�@!�n;n0 �V

�q�
n;n0 �0� n;n0 � q�;

(3)

where

 V�q�n;n0 � @!�q n�0� n0 �0�; (4)

and  n�0� � ��3=4
�������������������������������������
�2n� 1�!!=�2nn!�

p
is the (n; l � 0) os-

cillator wave function at r � 0 for an oscillator of radius 1.
The parameter �q is a dimensionless normalization con-
stant related to V0 by �q � �@2=���3=2�@!�1=2V0.

We determine the normalization constant �q by requir-
ing the ground-state energy of the truncated Hamiltonian to
equal the exact value for the unitary limit contact interac-
tion, "00 � @!=2. The separable form of (4) permits an
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algebraic diagonalization of the Hamiltonian. Each eigen-
value " of (3) satisfies the dispersion formula

 ��1
q � �

Xq
n�0

 2
n�0�

�2n� 3=2� � "=@!
: (5)

Requiring " � "00 � @!=2 in (5), we obtain a closed
expression for the normalization constant

 �q � ��
3=2

�Xq
n�0

�2n� 1�!!

2nn!

�
�1
: (6)

We note that the sum in (6) diverges as q1=2 for large q [12].
Thus, the strength of the � function goes to zero as q! 1,
showing the need for a renormalization procedure. A simi-
lar relation between the strength of the interaction and the
cutoff can be derived for a plane-wave basis. In that case
the relation is V0 � ��

2
@

2=�� where � is a momentum
cutoff [13]. This value of V0 agrees with the asymptotic
expression of Eq. (6) [12] once we equate the correspond-
ing cutoff energies as @2�2=2� � �2q� 3=2�@!.

The excited states of the q-truncated Hamiltonian (3)
have energies "�q�n0 that differ from the exact unitary limit
spectrum (2). Using the dispersion relation (5), we find that
the error in the energy �"�q�n0 � "�q�n0 � "n0 goes to zero at
large q, but only at a rather slow rate, �"�q�n0 � q

�1=2. We
present evidence below that this slow convergence is also
present in the q-renormalized energies for the A � 3 and
A � 4 systems. This makes it problematic to extrapolate
the q series to estimate the true q! 1 energies.

A new effective interaction.—We have considerably
more freedom to construct the q-space interaction than
we have exploited so far. The only requirement on the
q-space Hamiltonian is that it converge to the unitary limit
for q!1. For example, in effective field theory one may
introduce derivatives of the contact interaction to fit certain
properties of the two-particle Hamiltonian. Here we pro-
pose the following prescription to improve the q-space
interaction: simply require that the relative-coordinate
Hamiltonian reproduce all q� 1 s-wave eigenvalues of
Eq. (2). We can do this and still keep the separable form
for the interaction,

 Veff�q�
n;n0 � �@!fnfn0 : (7)

A motivation for preserving the separable form is given in
the discussion below. There are q� 1 independent varia-
bles fn in the interaction (7) and the same number of
eigenvalue equations having the form of Eq. (5) with fn
replacing

���������
j�qj

q
 n�0�. Using the conditions that all q� 1

lowest l � 0 unitary limit eigenvalues (2) (0 � n � q) are
reproduced, we find the following q� 1 equations for fn:

 

Xq
n�0

f2
n

2�n� r� � 1
� 1 �r � 0; . . . ; q�: (8)

Equations (8) determine a unique solution for f2
n (n �

0; . . . ; q) [14]. We choose the sign of the real numbers fn
to coincide with the sign of  n�0�. Using the convention
that the harmonic oscillator wave functions be positive at
the origin, the unique solution for fn is

 fn �

���������������������������������������������������������
�2n� 1�!!

�2n�!!
	2�q� n� � 1
!!

	2�q� n�
!!

s
: (9)

The interaction defined by (7) and (9) is different from
the renormalized contact interaction for any q. Both inter-
actions give eigenfunctions that converge to the correct
q! 1 limit, but the convergence rates differ. The indi-
vidual components of the eigenfunctions converge with an
error proportional to �q�1 for the proposed interaction,
with a proportionality constant depending on the compo-
nent. In comparison, the eigenvector components of the
renormalized contact interaction converge to the same
unitary limit eigenvector components but at a slower rate
of �q�1=2.

CI method and truncation of many-particle space.—In
the CI approach, one uses a single-particle basis in the
laboratory frame and constructs a many-particle basis of
Slater determinants for A fermions. In our problem, a
natural choice for the single-particle basis is the eigenstates
of the three-dimensional harmonic oscillator. These states
are labeled by orbital quantum numbers a � �na; la�, the
orbital magnetic quantum number ma, and an additional
two-valued quantum number (e.g., spin) to distinguish the
two species of fermions.

A way to truncate the many-particle space must be
specified. There are a number of truncation schemes in
the literature; here we will define a truncated single-
particle orbital basis and construct the A-particle wave
function allowing all possible antisymmetrized product
states. In particular, we shall use all single-particle states
in the oscillator shells N � 0; . . . ; Nmax with N � 2na �
la. There will be two limiting processes necessary to
calculate the many-particle energies. The first is Nmax !
1 at fixed q. Then, with converged q-regulated energies
we estimate the q! 1 limit.

Two technical aspects of our calculations should be
mentioned. The two-particle matrix elements of the inter-
action in the oscillator basis are conveniently calculated
using the Talmi-Moshinsky brackets to transform to rela-
tive and center of mass coordinates [15]. The many-
particle Hamiltonian is diagonalized using the shell model
codes OXBASH [16] and NUSHELL [17]. Unlike the nuclear
shell model, our orbitals are characterized by integer an-
gular momentum values. The two fermion species are
distinguished in the same way as neutrons and protons
are distinguished in the nuclear application.
A � 3 system.—We now show results for the A � 3

system. Its ground state is a negative-parity state with
orbital angular momentum L � 1 and energy
4:272 724 3 . . . @! [5,18]. In our CI convergence studies
we computed the ground-state energies E�q�Nmax

for q �
1; 2; 3; 4 and Nmax � q; . . . ; 7.
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For a fixed q, we find that E�q�Nmax
converge exponentially

or better inNmax for both interactions. This is demonstrated
in Fig. 1. Figure 1(a) shows E�q�Nmax

versus Nmax for q � 3.
The energies for both the renormalized contact interaction
(open circles) and the new interaction (solid circles) are
monotonically decreasing, as they must when the space
gets larger. We find [see Fig. 1(b)] that the energy differ-
ences �E�q�Nmax

� E�q�Nmax�1 � E
�q�
Nmax

decrease rapidly on a
logarithmic scale. In fact, the decrease is steeper than
linear on that scale, suggesting that the convergence might
be faster than exponential. The solid lines are quadratic fits
to log��E�q�Nmax

�, used to extrapolate to a value of E�q� �

E�q�1 . We observe the decrease rate of �E�q�Nmax
to be mono-

tonically increasing with Nmax, so a conservative lower
bound in E�q� is obtained using a fixed-rate extrapolation
above Nmax � 7 with an average rate determined by the
points Nmax � 5; 6; 7. An upper bound for E�q� is given by
E�q�7 .

Figure 2(a) shows the converged or extrapolated ener-
gies E�q� versus q. These energies are monotonically in-
creasing in q. For the new interaction (solid circles), we
observe a fast convergence to the exact value (dotted line).
Figure 2(b) shows the deviation j�E�q�j � jE�q� � E�1�j
from the exact result in a logarithmic scale. The concavity
of the curve for the renormalized contact interaction (open
circles) indicates the convergence in q is slower than
exponential. We find this convergence to be consistent
with a low negative power law �q�� where �� 0:5–1:5
(for the excited A � 2 system it can be shown analytically
that � � 1=2). However, for the new interaction (solid
circles) the convergence is at least exponential.

This exponential convergence allows for an accurate
estimate of E�1�. We calculated successive energy differ-
ences �E�q� � E�q�1� � E�q� and determined an average
rate of decrease � of j�E�q�j for q below a given q0.
Assuming a fixed rate � for q > q0, the extrapolated energy
is 	�E�q

0� � E�q
0�1�
=��� 1�. We can take this value to be

an upper bound for E�1�, since the rate of decrease of
j�E�q�j seems to be a monotonically nondecreasing func-
tion of q. Using q0 � 3 and an average decrease rate of 3.28
(determined from �E�q� at q � 1; 2; 3), we find E�1� �
�4:274� 0:004�@!, an accuracy of 0.1%.

For the L� � 0� first excited state at E�1� �
4:6662 . . . @! [5,18] we find E�1� � �4:646� 0:025�@!,
an accuracy better than 0.6% [see Fig. 3(a)].
A � 4 system.—We also studied the L � 0 ground state

of the A � 4 system with two particles of each species. The
results for E�q�, using a cutoff of Nmax � 7, are shown in
Fig. 3(b). The q � 4 energy is not sufficiently converged to
be useful. The straight line in the inset is a fit to log��E�q��
using q � 1; 2; 3 and provides an average decrease rate for
determining a lower bound. Using E�3�7 as an upper bound,
we estimate E�1� � �5:051� 0:024�@!. This result is con-
sistent with fixed-node Monte Carlo estimates of �5:1�
0:1�@! [1] and �5:069� 0:009�@! [2].

Increasing the cutoff to Nmax � 9, we find E�4� �
�5:047� 0:001� 0:003�@!. Following a similar method
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FIG. 1. Convergence in Nmax for the A � 3 ground-state en-
ergy. (a) E�q�Nmax

versus Nmax for q � 3. Open circles correspond to
the renormalized contact interaction and solid circles to the
interaction defined by (7) and (9). (b) �E�3�Nmax

versus Nmax in a
logarithmic scale. All energies are in units of @!.
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FIG. 2. Convergence of the q-regulated energies for the A � 3
ground state. (a) E�q� versus q for both interactions (symbols and
units as in Fig. 1). The dotted line is the exact ground-state
energy. (b) The error j�E�q�j in a logarithmic scale.
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FIG. 3. (a) E�q� versus q for the lowest L � 0 excited state of
the A � 3 system. The inset shows �E�q� versus q in a logarith-
mic scale. Symbols and units as in Fig. 2. (b) E�q� versus q for the
L � 0 ground state of the A � 4 system. The inset shows �E�q�

versus q for the new interaction in a logarithmic scale. The solid
line is a linear fit to q � 1; 2; 3.
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as above but using q � 1; 2; 3; 4 we now find E�1� �
�5:045� 0:003�@!, an order of magnitude improvement
in accuracy compared with our estimate above and with the
result �5:03� 0:02�@! of Ref. [3].

Discussion.—There are a number of methodologies in
current use to construct effective interactions for many-
particle systems; among them, effective field theory (EFT)
and the unitary-transformation method have a connection
to the interactions discussed here. In EFT, the interaction is
parametrized by contact terms (leading order) and their
derivatives. Our procedure to construct the q-renormalized
contact interaction can thus be considered as leading-order
EFT. Its poor convergence suggests that EFT treatments
will require derivative terms to accurately model trapped
fermion systems (see also Ref. [11]).

Our improved interaction has some connection with
Suzuki’s unitary regularization [19], a method widely
used in nuclear physics [20–22]. In Suzuki’s approach,
an effective interaction is determined by a unitary trans-
formation of the Hamiltonian that decouples a subspace
from its complementary subspace. In practice, the trans-
formation is performed on the two-particle Hamiltonian,
giving a transformed Hamiltonian that is block diagonal.
This block diagonal structure guarantees that the energy
eigenvalues are reproduced in the truncated subspace. Our
effective interaction also reproduces the exact two-particle
spectrum in a truncated subspace but has the advantage of
being simple, i.e., separable.

The unitary transformation of the two-particle
Hamiltonian cannot be carried out independently for all
possible pairings in the many-body Hamiltonian. When
this transformation is applied to the many-particle system,
it generates higher-order many-body interactions that are
usually simply neglected. Rather than attempting to com-
pute these higher-order terms, we have studied the con-
vergence in the large q limit, where our effective
interaction coincides with the contact interaction. By
studying the convergence, one can assess the usefulness
of many of the specific details of the different method-
ologies. For example, there are other choices of the many-
particle space truncation that might be more efficient.
Nonunitary transformations might give faster convergence.
The no-core-shell-model methodology [23] is an example
where a particular choice was made.

Our method can be applied for interaction strengths
away from unitarity, at the slight cost of inverting a
(q� 1)-dimensional matrix. It may also be interesting to
apply the method to uniform systems, using the separa-
bility of the interaction in a plane-wave basis. Fock space
auxiliary-field Monte Carlo methods can be used with
the new interaction to extract the thermodynamic proper-
ties of the trapped condensate for a large number of
particles.
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