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Chemotacting eukaryotic cells are able to detect very small chemical gradients (�1%) for a large range
of background concentrations. For these chemical environments, fluctuations in the number of bound
ligands will become important. Here, we investigate the effect of receptor noise in a simplified one-
dimensional geometry. The auto- and cross-correlations of the noise sources at the front and the back of
the cell are explicitly computed using an effective Monte Carlo simulation tool. The resulting stochastic
equations for the investigated directional sensing model can be solved analytically in Fourier space. We
determine the chemotactic efficiency, a measure of motility for the cell, as a function of several
experimental parameters, leading to explicit experimental predictions.

DOI: 10.1103/PhysRevLett.100.228101 PACS numbers: 87.16.Xa, 87.17.Aa, 87.17.Jj

Chemotaxis, the directed movement of cells in response
to external chemical gradients, plays an important role in a
wide variety of biological processes including wound heal-
ing, fetal development, and cancer metastasis [1]. The
externally diffusing chemoattractant molecules (ligands)
bind to cell membrane receptors which activate second
messenger signaling pathways. In the case of eukaryotic
cells, the subject of this Letter, these pathways eventually
leads to cell motion in the form of crawling up the gradient.

Surprisingly, eukaryotic cells have been found to che-
motax in gradients that are only 1%–2% across the cell
body. Furthermore, Dictyostelium discoideum cells, a so-
cial amoeba, were found to be able to direct their motion
even when the average external chemoattractant concen-
tration was well below the dissociation constant Kd (the
value for which half the receptors are bound in equilib-
rium) [2]. In fact, at threshold the difference in the number
of bound receptors at the front and the back can be esti-
mated to be on the order of 20 while the total number of
bound receptors is only a few hundred. This immediately
raises the question of the effect of noise on chemotaxis, a
topic that has been studied previously using a variety of
approximative techniques [3–6]. What has been lacking,
however, is a formalism that simulates quantitatively the
receptor noise and its correlations and uses this as input for
an intracellular chemotactic model.

In this Letter, we will address the role of receptor noise
in directional sensing, the first step in chemotaxis during
which cells determine the direction of the gradient. We will
use a simplified one-dimensional geometry, schematically
shown in Fig. 1, which allows us to obtain analytical
expressions for the diffusive part of the directional sensing
model. Our 1D cell contains a front and a back, both
considers to be points, connected by a line, representing
the interior, or cytosol, of the cell. The input S at the front
and back of the cell represents the number of bound
receptors arising from the simple ligand-receptor interac-
tion L� R0 � R1. The forward rate k��L�, where [L]
represents the ligand concentration, and backward rate
k� determine the transitions between the unoccupied R0

and occupied R1 states and can be combined to give the
dissociation constant Kd �

k�
k�

. We will assume that the
cell is placed in a gradient of steepness p and midpoint
concentration c such that the concentration at the front (f)
is given by cf � c	1� p
 and at the back (b) by cb �
c	1� p
 [7]. The signal S at the front and back can then be
written as the sum of a deterministic and a stochastic part:

 Sf �
c	1� p


c	1� p
 � Kd
� �f;

Sb �
c	1� p


c	1� p
 � Kd
� �b:

(1)

Here, �f and �f are noise sources with auto and cross
correlations given by <�f	t
�f	t0
> � Cff	t� t0
,
<�b	t
�b	t0
> � Cbb	t� t0
 and <�f	t
�b	t0
> �
Cfb	t� t0
 which arise due to the stochastic nature of the
binding or unbinding process as well as the diffusive
process of the ligands.

The input S needs to be coupled to a directional sensing
mechanism which translates the external asymmetry to an
internal asymmetry. A number of different mechanisms
have been proposed including Turing-type instability
mechanisms [8], phase separation mechanisms [9] and
depletion mechanisms [10,11]. Here, we will use the re-
cently developed balanced inactivation model [12], which
has as the key feature a cytosolic diffusing inhibitory
species, denoted here by B. This inhibitor, postulated in
almost all directional sensing studies including local
excitation-global inhibition models [13,14], obeys the stan-
dard diffusion equation @B

@t � Dr2B, where D is the diffu-
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FIG. 1 (color online). Schematic representation of our one-
dimensional cell.
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sion constant of the inhibitor. B is linearly generated by the
signal S at a rate ka and binds to the membrane at a rate kb:
D@B

@n � kaS� kbB. The membrane-bound version of B can
inactivate a membrane-bound activator A which functions
as the readout component of the model and which is also
generated at a rate ka. If the diffusion of the cytosolic
inhibitor is fast enough the levels of membrane-bound B
at the front and the back are nearly identical. This leads to
an almost complete inactivation of A at the back while the
level A at the front remains significantly nonzero. The
resulting large asymmetry in A can be achieved over a
wide range of gradient and model parameters. Further
details of this model can be found in the original Ref.
[12]. It should be noted that many of the biochemical
components in directional sensing models have not yet
been identified. One cannot, therefore, make an a priori
estimate for the additional noise resulting from the finite
concentration of the signaling pathway components. Here,
we treat the directional sensing model deterministically
and our results should be viewed as an upper bound on
the gradient detection capability.

The linear relationship between B and S allows us to
analytically solve the diffusion equation in Fourier space.
Let us write the solution of B as a sum of a deterministic
part and a stochastic part: Bf � Bf;0 � bf and Bb �
Bb;0 � bb. Explicit expressions can be obtained for the
deterministic part [12] and the stochastic part has as corre-
lation function hbf	t
bf	t0
i � Nff	t� t0
 with similar ex-
pressions for Nbb and Nfb. Then, in Fourier space we find

 

~B	x;!
 � ~be	!

cosh	�x


cosh	�L=2

� ~bo	!


sinh	�x


sinh	�L=2

; (2)

where � �
�����������������
�i!=D

p
and where we have introduced the

tilde to denote a quantity in Fourier space. Plugging this
into the boundary conditions, we find that ~be � ka	~�f �
~�b
=f2�kb �D� tanh	�L=2
�g and a similar expression for
~bo. It is easy to verify that ~bf � ~be � ~bo and ~bb � ~be �
~bo, from which we can find (lengthy) expressions for the
correlation spectra which are functions of the correlation
functions of the external signal. For example, for the front-
front correlation spectrum we find

 

~Nff	!
�
k2
a

4

�
~Cff	!


�
1

kb�D�tanh	�L=2

�

1

kb�D�coth	�L=2


�
2

� ~Cbb	!

�

1

kb�D�tanh	�L=2

�

1

kb�D�coth	�L=2


�
2
� ~Cfb	!


�
1

kb�D�tanh	�L=2

�

1

kb�D�coth	�L=2


�

�

�
1

kb�D�tanh	�L=2

�

1

kb�D�coth	�L=2


�
�
�c:c:

�
;

where c.c. stands for the complex conjugate of the last term
in the right-hand side expression.

To obtain the spectra of the correlation functions Cff,
Cbb and Cfb, we use MCELL3, a modeling tool for realistic
simulations of cellular signaling in complex three dimen-
sional geometries [15]. This simulation tool, recently used
by us to determine the autocorrelation function for a
spherical cell [16], uses highly optimized Monte Carlo
algorithms to track the stochastic behavior of discrete
molecules in space and time as they diffuse in user-
specified geometries. It can model interactions between
diffusing molecules and receptors on cell membranes as
well as molecule-molecule interactions and has been vali-
dated extensively [15].

In our MCell simulations, we placed receptors uniformly
on the surface of a sphere that was in a much larger
computational box. We divided the cell into two halves
and the receptors in one half of the cell were occupied
according to the equilibrium value N

2
c

c�Kd
while the other

half contained empty receptors. The boundary of the box is
taken to be absorptive so once a ligand hits the boundary it
is removed from the system. The simulation recorded the
total number of bound receptors in each half of the cell as a
function of time from which the auto and cross correlation
were calculated. This method, also applied in [16], is
computationally much more efficient than recording the

number of bound receptors in a constant background con-
centration and produces accurate results for the correlation
times. Furthermore, it also allows us to estimate the am-
plitude of the cross correlation. Of course, since the re-
ceptors on the second half of the cell are initially all empty
the probability of binding to the second half is slightly
larger than for a uniformly occupied sphere, leading to an
overestimation of cross correlation. However, for small
concentrations this effect is negligible and the numerically
obtained amplitude is accurate.

To obtain a statistically meaningful answer we ran this
simulation 100 times and examples of the result can be
seen in Figs. 2(a) and 2(b) for the auto and cross correla-
tion, respectively. As in Ref. [16], we found that the
autocorrelation can be fitted accurately by a decaying
exponential Cff � Aa	cf
e

�t=�a , where the amplitude is
given by the variance of a single receptor (Aa	cf
 �
NcfKd=�2	cf � Kd
2�), and with an autocorrelation time
given by

 �a �
1

k� � k�cf
�

N
8�DlRKd

� �rec � �diff : (3)

Here, �rec describes the receptor dynamics and �diff de-
scribes the contribution of ligand diffusion (Dl is the
diffusion constant of the ligands and R is the radius of
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the cell). Similar expressions hold for Cbb. The cross-
correlation was found to fit the expression Cfb �
Ac
�c
te�t=�c with both Ac and �c as fitting parameters.
An efficient way to generate the required noise spectra

can be formulated using the Fourier transform of the fits to
the auto and cross correlation:

 

~Cff	!
 �
2Aa=�a

1=�2
a �!

2 ; ~Cfb	!
 �
2Ac	1=�

2
c �!

2


�c	1=�
2
c �!

2
2
:

(4)

Gaussian distributed random variables were drawn from
this spectrum and were used to calculate the corresponding
spectra for B. The time series of B were obtained using
inverse Fourier transforms and substituted into the equa-
tions for the membrane-bound components of the direc-
tional sensing model. These ODEs (one for the back and
one for the front) are then solved numerically. An example
of the resulting time traces is shown in Fig. 3(a) for the
signal at the front and the back and 3(b) for the correspond-
ing output of the directional sensing model. Clearly, even
though the balanced inactivation model is able to filter out
some of the noise of the input signal, the output signal
remains noisy.

To quantify the output of the directional sensing model,
and thus to generate a measure for motility of the cell, we
constructed a motility model that uses the difference in A at
the front and the back, normalized by the mean, to decide
to move up or down the gradient. This simplified model
ignores all the complex and largely unknown steps be-
tween directional sensing and motility including the cyto-
skeleton machinery. Specifically, we calculate

 G	t
 �

R
t
�1 e

	t�s
=Tint	Af � Ab
dsR
t
�1 e

	t�s
=Tint	Af � Ab
ds
(5)

after each ‘‘decision’’ interval Tdec and where we have
introduced the integration time Tint. Motivated by typical
pseudopod lifetimes in Dictyostelium we choose Tdec �
30 s and Tint � 10 s although similar qualitative results

were obtained using different values. The cell takes a
positive unit step in the direction of the gradient if G is
larger than a threshold �, takes a negative unit step in the
‘‘wrong’’ direction if G is smaller than this threshold and
does not move if�� 
 G 
 �. The chemotactic efficiency
CE is then defined as the total displacement in the direction
of the gradient divided by the total number of decision
intervals and can take on values between �1 and �1. We
note that defining an alternative measure of the chemo-
tactic efficiency using the SNR of Af � Ab ([4,5]) leads to
qualitatively similar results.

We have first determined the relative importance of the
cross correlation. For this, we fixed the amplitude and time
scale of the autocorrelation and determined CE as a func-
tion of the amplitude of the cross correlation Ac. An
example of such a simulation is shown in Fig. 3(c) for a
particular set of parameters. The error bars correspond to a
standard deviation obtained by running 100 simulations of
5000 s each. The value of the cross correlation indicated by
the solid symbol is the one found using the parameters
values for Dictyostelium of Fig. 2. This graph demonstrates
that the cross-correlation affectsCE by at most 4% and that
for biological realistic values the contribution of the cross
correlation can be safely ignored. We have verified that this
result does not depend strongly on the chosen parameters.

Next, we determined CE as a function of the gradient
steepness, setting Ac � 0. The result can be found in
Fig. 4(a) and shows that CE increases as the steepness
increases. This, of course, can be expected since an in-
crease in gradient steepness leads to an increasing differ-
ence in the number of bound receptors at the front and the
back. A qualitatively similar sigmoidal dependence was
found for different values of the model parameters.

We also determined CE as a function of the autocorre-
lation time �a. Consistent with studies on the propagation
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FIG. 2 (color online). The auto (a) and cross correlation (b) for
a semisphere computed using MCell. The red curves are the fits
using the formulas from the main text with as results: Ac � 37,
�c � 1:56 s and �a � 1:15 s. Parameters are based on data from
Dictyostelium: N � 70 000 receptors, Dl � 200 �m2=s, R �
5 �m, k� � 1=s and Kd � 30 nM with c � 1 nM.
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FIG. 3 (color online). Example of the input signal (a) and the
output signal of balanced inactivation model (b). Parameter
values are Ac � 0, �a � 1:3 s, ka � 0:01 s�1, ki �
1000 �m 	s molecule
�1, kb � 3 �m s�1, k�a � 0:2 s�1,
k�b � 0:2 s�1 and D � 10 �m2 s�1. The distance between the
front and the back is L � 10 �m, p � 0:01, Kd � 30 nM and
c � 1 nM. (c) The chemotactic efficiency as a function of the
amplitude of the noise cross-correlation. The solid point corre-
sponds to the amplitude found using the MCell simulation and
represents a typical experimental value. Parameter values are as
above and in Fig. 1 with Tdec � 30 s, Tint � 10 s and � � 0:95.
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of noise in signal transduction networks [3,17] the result
demonstrates that a larger correlation time is detrimental to
detecting the gradient [Fig. 4(b)]. Conversely, the maxi-
mumCE a cell can achieved for a given set of parameters is
in the white noise limit �a ! 0. This result could be tested
experimentally using the explicit expression for the corre-
lation time [Eq. (3)]. For example, decreasing the diffusion
constant of the ligands via chemical modifications by a
factor of 10 would increase the correlation time roughly
threefold. This increase is predicted to lead to a decrease in
the chemotactic efficiency.

Finally, we determined CE as a function of the back-
ground concentration. The results, shown in Fig. 4(c),
demonstrate that CE exhibits a clear maximum around
c=Kd � 0:7. Although we have not performed a systematic
parameter sweep, it appears that the observed maximum
varies only slightly for different directional sensing and
motility parameters and occurs consistently for c=Kd e<1. It
should be possible to experimentally test this prediction
using microfluidic devices similar to the ones used in
Ref. [2]. In particular, the minimum gradient for chemo-
taxis should be a function of the background concentration
much like our numerical results shown in Fig. 4(d).

In summary, we have presented an efficient way to
calculate the effect of receptor noise levels on the gradient
sensing capabilities of eukaryotic cells. We were able to
derive analytical expressions for the diffusive cytosolic
inhibitor that depend on the auto- and cross-correlation
spectra of the receptor occupancy. Through direct numeri-
cal calculations, we found that the contribution of the
cross-correlation to motility can be neglected. Our method
is directly applicable to other directional sensing models in
which a diffusing species is linearly generated by the
external signal [14]. However, we point out that for more
complicated directional sensing models for which the dif-
fusion equation is not diagonal in frequency space one can
always directly integrate the underlying equations. Future
directions currently underway include investigations in
higher dimensions, where preliminary results show that

the qualitative features remain unchanged, and the inclu-
sion of noise terms in the signal transduction pathway.
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FIG. 4. The chemotactic efficiency as a function of the steepness of the gradient (a), the autocorrelation time scale (b) and the
background concentration (c). Fixed parameter values are as in Fig. 3 and 4 with � � 0:95 (a), p � 0:01 and � � 0:65 (b) and
�diff � 0:3 s, p � 0:01 and � � 0:85 (c). In (d) we have plotted the onset of chemotaxis, defined as a CE value larger that 0.5, as a
function of the background concentration (�diff � 0:3 s and � � 0:95).
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