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Recent experiments on the ‘‘hyperkagome’’ lattice system Na4Ir3O8 have demonstrated that it is a rare
example of a three-dimensional spin-1=2 frustrated antiferromagnet. We investigate the role of quantum
fluctuations as the primary mechanism lifting the macroscopic degeneracy inherited by classical spins on
this lattice. In the semiclassical limit we predict, based on large-N calculations, that an unusual ~q � 0
coplanar magnetically ordered ground state is stabilized with no local zero modes that correspond to local
deformations of the spin configurations. This phase melts in the quantum limit and a gapped topological
Z2 spin liquid phase emerges. In the vicinity of this quantum phase transition, we study the dynamic spin
structure factor and comment on the relevance of our results for future neutron scattering experiments.
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Introduction.—Geometrically frustrated spin systems
are a promising place to search for new ‘‘exotic’’ phases
of matter. Classical spin models on such lattices typically
exhibit massive degeneracy of their zero temperature
ground state ensembles so that phases of matter in these
systems are selected exclusively by thermal and/or quan-
tum fluctuations. While magnetically ordered states may
still arise at very low temperatures in such systems, emer-
gent phases with, for example, fractionalized excitations
and topologically protected ground states, are also pos-
sible, especially in spin- 1

2 systems [1,2].
On the other hand, spin-1=2 frustrated magnets are ex-

tremely rare, with only a few known examples such as
volborthite [3], herbertsmithite [4], and certain organic
salts [5,6]. In light of this, the recent experiment [7]
demonstrating that Na4Ir3O8 (NIO) is a new spin-1=2
geometrically frustrated magnet and the first such material
to contain a genuinely three-dimensional lattice is espe-
cially important. In particular, these experiments see no
sign of magnetic or orbital ordering down to a few Kelvin
while bulk susceptibility measurements show that the
spin-1=2 iridium atoms interact antiferromagnetically
with a Curie-Weiss constant of 650 K. Furthermore, a
nearly constant susceptibility and a C=T that is magnetic
field independent with a broad anomalous peak at about
25 K is observed. Certainly, the remarkable hyperkagome
lattice (see Fig. 1) that spin-1=2 iridium atoms occupy is
responsible for these striking observations.

In order to investigate whether NIO’s magnetic proper-
ties are truly quantum mechanical in origin, it is necessary
to understand how the classical ground state degeneracy is
lifted by both thermal fluctuations (entropic selection) and
quantum fluctuations (energetic selection). Fortunately,
much is now known about the entropic selection of these
classical ground states due to a recent study of the classical
Heisenberg model on NIO’s hyperkagome lattice [8]. In
particular, the classical cooperative paramagnetic (CCP)
phase exists over a wide temperature range with a spin

nematic phase setting in below J=1000 � 300 mK, where
J is the Heisenberg exchange coupling. However, the
behavior of the classical model deviates from measure-
ments of NIO’s thermodynamic quantities at and below the
anomalous peak in C=T at 25 K suggesting that quantum
fluctuations may dominate even at relatively high
temperatures.

In this Letter, we present litmus tests for the existence of
a quantum spin liquid phase in NIO. We do so through an
investigation of the ground states of the Heisenberg quan-
tum antiferromagnetic spin model on its frustrated hyper-
kagome lattice with the large-N Sp�N� method [9–11].
This allows us to study the semiclassical (large ‘‘spin’’)
and quantum (small ‘‘spin’’) regimes on equal footing. In
particular, we show how a quantum spin liquid phase in the
quantum regime can be distinguished from both a CCP
phase at finite temperatures and the most likely magneti-
cally ordered phase.

FIG. 1 (color online). (a) The unit cell of the iridium atoms in
NIO. All sites and bonds are chemically equivalent due to the
P4132 space group symmetry of the lattice. Letters indicate the
120� coplaner magnetic ordering expected in the semiclassical
limit. (b) Positions of magnetic Bragg peaks in the h0‘ plane of
the ordered phase shown in (a). Notice magnetic Bragg peaks for
this phase coincide with some lattice Bragg peaks.
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In the semiclassical regime, we predict a ground state
with the 120� coplaner magnetic ordering shown in
Fig. 1(a). Defining ABC as three unit spin vectors whose
sum vanishes, this ordering is best characterized by a
BCBC pattern along the ‘‘threads,’’ paths shown by the
darker bonds. This is in contrast to the

���
3
p
�

���
3
p

state on
the two-dimensional kagome lattice which is also coplaner
but with a BCBC pattern around hexagons. Since threads
are as long as the length of the system, this state is not
expected to be entropically selected [12], a result consis-
tent with the thermally stabilized spin nematic ordering
and an absence of magnetic ordering found in the
Monte Carlo study of Ref. [8]. Figure 1(b) shows the
position of the corresponding magnetic Bragg peaks.

On the other hand, in the quantum regime the magnetic
ordering melts and a Z2 quantum spin liquid phase arises.
Since the spin liquid is a paramagnetic phase, it is impor-
tant to distinguish it from the CCP phase. To this end,
consider the dynamic spin structure factors S� ~k;!� de-
picted in Fig. 2. The energy integrated spin structure factor
of the Z2 spin liquid ground state in Fig. 2(a) can be
compared directly with the static spin structure factor of
the CCP phase in Fig. 2(b) [8]. In the CCP phase, long
range dipolar correlations lead to the vanishing of spin
correlations (nodes) along the [hhh] and symmetry-related
directions. In contrast, dipolar correlations in the Z2 spin
liquid phase retain a finite correlation length, leading to the
absence of this nodal structure.

Another important signature of the quantum spin liquid
phase is the presence of spin-1=2 neutral excitations,
dubbed spinons. This leads to a spinon-antispinon contin-
uum in the dynamic spin structure factor and the bottom (or
threshold in energy for a given momentum) of this contin-
uum should have a well-defined dispersion relation.
Conversely, in a CCP phase no such sharp threshold is
possible, making its observation away from Bragg peaks a
definitive proof for the existence of a quantum spin liquid
phase. This threshold for the Z2 quantum spin liquid phase
proposed here is plotted in Fig. 2(c) (the shaded region
simply represents where S� ~k; !� � 0).

Model.—Consider now the Heisenberg model on NIO’s
hyperkagome lattice. This model in the Schwinger boson
representation is as follows [13]:

 H � J
X
hiji

~Si � ~Sj � �
J
2

X
hiji

	Ay
ijAij � 2S2
; (1)

where the spin operators are ~Si �
1
2bi� ~��;�0bi�0 , the singlet

creation operator is Ay
ij � byi"b

y
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y
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P
�b
y
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where S is the size of the spin. It is convenient to generalize
this SU(2) model by introducing N flavors of Schwinger
bosons, bmi�, m 2 f1; . . . ; Ng and letting Ay

ij !PN
m�1 A

ym
ij create a singlet for each flavor. Then
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and is Sp�N� symmetric. In the large-N limit Qij �PN
m�1hA

m
iji is a mean field and the chemical potential �i �

� enforces the constraint on average where � � 2S=N is
held fixed as N ! 1.

This large-N limit is well suited to our purposes since as
a function of � we can access both a quantum regime at
small � and a semiclassical regime at large �.

Quantum regime.—To study this regime, it is useful to
start from an extreme quantum limit and expand the ground
state energy in powers of �. Following Ref. [14], before
expanding in powers of �, consider first reformulating the
ground state energy in matrix form

 

ESp�N�

N
�Tr

�
J
4

Q �Qy���1��I�

������������������������������
I�

J2

4�2 Q �Qy
s �

;

(3)

where �Q�ij � Qij, and then rescaling Qij ! �Qij and
�! �� by an � chosen so that @ESp�N�=@� � 0 making

FIG. 2 (color online). Distinguishing the Z2 quantum spin liquid ground state from the classical cooperative paramagnet (CCP) via
the dynamic spin structure factor S�k;!�. (a),(b) The presence of nodes along the [hhh] direction in (b) leads to long range dipolar spin
correlations; these correlations are absent in (a) (axes run from h � �2; . . . ; 2, l � �2; . . . ; 2). (c) The spinon-antispinon continuum in
S�k;!�: shaded (blue) region represents where the structure factor is finite. Notice that the threshold of the continuum has a well-
defined dispersion.
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ESp�N� scale invariant. Solving the constraint equation,
@ESp�N�=@� � 0, order by order in � then leads to

 ESp�N�=NNsites � �
X1
n�1

�
2n�1 �2n� 3�!!

�2n�!!
Pn
�P1�

n

�

�
terms involving

Pm
�P1�

m ;m < n
��
�n;

(4)

where Pn � Tr	Q �Qy
n=Nsites is a measure of the total
field strength, or flux (defined below), through all loops of
length 2n starting and ending at the same site (including
smaller loops whose total length is 2n). Through any
individual loop C this (normalized) flux is defined by

 2 cos��C� � Qij��Q
�
jk� � � �Qmn��Q

�
ni�  c:c: (5)

Thus, Pn is the total flux through all loops of length 2n.
It follows from Eq. (4) that the ground state must satisfy

a flux expulsion principle: in this state the flux �C through
all loops must vanish, if possible. To see that this is the
case, consider using Eq. (4) to study the energy difference
between two states that differ only by flux through loops of
length ‘ or greater
 

ESp�N���
�1�
‘ � � ESp�N���

�2�
‘ �

� 2‘�1 �2‘� 3�!!

�2‘�!!

P
���2�‘ �

‘ � P
���1�‘ �

‘

P‘1
�‘ O��‘1�: (6)

So, for example, if there is a state with zero flux, Pn is
maximized and it is the ground state. For a nearest neigh-
bor model, this result proves a previously made conjecture
[14]. Interestingly, as a by-product of Eq. (6), we may also
study the energetics of topological sectors that are charac-
terized by loops that go all the way around the system (as
discussed below).

Enumeration of spin liquid states.—In the quantum
regime, the natural ground state may be a quantum spin
liquid phase. Utilizing the above loop expansion, we can
solve the energy minimization problem by first reducing
the number of candidate ground states to a few spin liquid
states and then comparing their energy.

We begin by searching for spin liquid states among the
set of translationally invariant Ising states with Qhiji � �1
within the unit cell, where hiji are nearest neighbor bonds.
That Qij is a pure phase results from the scale invariance
introduced earlier. The restriction to Ising states then fol-
lows from the geometric frustration of the lattice and that
Qij is a pair amplitude which breaks the U(1) gauge
invariance down to Z2 [11]. We will not consider transla-
tionally noninvariant spin liquid states. This may be justi-
fied because the nature of the frustration of the
hyperkagome lattice, being made of corner-sharing tri-
angles, is similar to the kagome lattice where the Sp�N�
ground state is translationally invariant [11].

The search for spin liquid states is then simplified by
performing a symmetry analysis on the above set of mean
field states. By fixing the gauge, the symmetry of each state
is then understood by studying its distribution of flux. The
central result of this analysis [15] is that two Z2 spin liquid
states and their eightfold degenerate topological sectors are
identified (see Fig. 3). The eightfold degeneracy arises
from the existence of � flux through loops that go all the
way around the system, and is expected when periodic
boundary conditions are imposed on a three-dimensional
Z2 spin liquid [16]. We find that these two states are
distinguished from each other by the existence or absence
of � flux through the 10 site loop (the smallest even site
loop on this lattice). We will therefore call them the zero-
flux state and the �-flux state.

Zero-flux state is the mean field ground state.—This
follows from the flux expulsion principle. In addition, we
can show this explicitly by making use of Eq. (6) with
P5 � 18 264 in the zero-flux state and P5 � 18 224 in the
�-flux state. The energy difference at small � is then

 ESp�N�	� flux
 � ESp�N�	0 flux
 �
35

2048
�5 O��6�> 0:

(7)

The zero-flux state has zero flux through all of its smallest
loops and is unique (up to topological degeneracy) in the
translationally invariant sector. Note that the splitting be-
tween these states is small in the limit of small �, a
consequence of the long (length 10) loop that needs to be
traversed to induce a splitting.

Topological order.—The topological order of the zero-
flux state, a central property of Z2 spin liquids, requires an
eightfold degenerate ground state manifold with periodic
boundary conditions. In our construction, these eight de-
generate states arise naturally. Consider, for example, the
zero-flux state with an additional � flux through all z-axis
‘‘threads’’ (as highlighted in Fig. 1) which wind around the
system with L unit cells in the z direction (L must be odd
here). Since this state is otherwise the same as the state
with zero flux through all threads, using Eq. (6) the energy
splitting is

FIG. 3 (color online). (a) The zero- and (b) �-flux states of the
hyperkagome Sp�N� quantum antiferromagnet. If an arrow
points from site i to site j, then Qij � 1 and Qji � �1.
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e�2L ln�2=�� O��2L1�; (8)

where �2L� 3�!!=�2L�!! � 1=�2
����
�
p

L3=2� for large L and,
since there are only two loops of length 2L starting from
the same site, Pnz�0

2L � Pnz�1
2L � 4=3. Note that the expo-

nential dependence of �E on L is an explicit demonstra-
tion of the topological order of this phase [17].
Furthermore, since the Z2 gauge theory in this gapped
three-dimensional spin liquid is dual to a three-
dimensional Ising model, a finite temperature transition
should occur [18] and it corresponds to the transition to
an ordinary paramagnetic state from the low temperature
spin liquid state. This transition, however, is not in the spin
sector and may not coincide with a crossover in the spin
structure factor from the high temperature CCP phase.

Experimental signatures.—The zero-flux state has sev-
eral features which distinguish it from the CCP phase.
Consider the energy integrated spin structure factor for
the zero-flux state shown in Fig. 2(a) (this was calculated
following Ref. [11]) and the static spin structure of the
CCP phase (taken from Ref. [8]) shown in Fig. 2(b). Notice
that the spin liquid phase does not possess the long range
dipolar spin correlations and its associated nodal structure
along the [hhh] direction (and symmetry-related direc-
tions)—characteristic features of the CCP phase. The
presence or absence of long range dipolar correlations
clearly distinguishes these two phases.

In the Z2 spin liquid phase, the elementary excitations
are spin-1=2 carrying spinions. Since the spin structure
factor S� ~k;!� measures spin-1 excitations, it vanishes un-
less !> "� ~q�  "� ~q� ~k� for any value of ~q where "� ~q� is
the dispersion of a single spinon excitation. This defines
the spinon-antispinon threshold [19]. It is plotted as the
bottom of the continuum given by the shaded (blue) region
in Fig. 2(c). It should be entirely absent in the CCP phase.

Semiclassical regime.—Beyond the small � regime, the
zero-flux state becomes unstable to magnetic ordering at
� � �c � 0:4 (similarly the �-flux state becomes unstable
at �c � 0:8). This is remarkably large, given that magnetic
order is expected to be more stable in three dimensions but
that �c � 0:34 for a triangular lattice and �c � 0:53 for the
kagome lattice [11]. The spin ordering pattern obtained
upon spinon condensation in the zero-flux state is shown in
Fig. 1(a). In contrast to
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state on the kagome lat-
tice, this state has no local zero modes that correspond to
local deformations of the spin configuration [12]. Fluctua-
tions within the zero temperature classical spin manifold
can only occur along an infinitely long thread with pattern
BCBC. Thus, finite temperature fluctuations may not select
this state consistent with the spin nematic ordering and the
absence of magnetic ordering found in numerics [8].

Conclusion.—In this Letter, we have presented tests for
the existence of a quantum spin liquid phase in NIO. Using
the large-N Sp�N� method, we proposed two candidate
ground states: a magnetically ordered state in the semiclas-

sical regime and a Z2 quantum spin liquid state in a
quantum regime. The magnetically ordered state has a ~q �
0 coplanar spin ordering pattern which we argue is unlikely
to be entropically selected. Assuming NIO remains para-
magnetic at low temperatures, it is still important to find
features distinguishing a quantum spin liquid from a clas-
sical cooperative paramagnet. Here we have discussed two
such features for the Z2 spin liquid state. It should not have
long ranged dipolar correlations and the associated nodal
structures along the [hhh] direction (and symmetry-related
directions) that are the characteristics of the CCP phase. It
should have a spinon-antispinon continuum with a thresh-
old obeying a well-defined dispersion. Future neutron scat-
tering experiments on NIO at current temperatures and at
lower temperatures would be decisive tests for our
predictions.
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