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In spite of the absence of a macroscopic magnetic moment, an antiferromagnet is spin-polarized on an
atomic scale. The electric current passing through a conducting antiferromagnet is polarized as well,
leading to spin-transfer torques when the order parameter is textured, such as in antiferromagnetic
noncollinear spin valves and domain walls. We report a first principles study on the electronic transport
properties of antiferromagnetic systems. The current-induced spin torques acting on the magnetic
moments are comparable with those in conventional ferromagnetic materials, leading to measurable
angular resistances and current-induced magnetization dynamics. In contrast to ferromagnets, spin torques
in antiferromagnets are very nonlocal. The torques acting far away from the center of an antiferromagnetic
domain wall should facilitate current-induced domain wall motion.
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Antiferromagnet metals (AFMs) are widely used to pin
and exchange-bias ferromagnets in devices such as mag-
netic spin valve read heads [1,2]. The absence of magnetic
stray fields makes them very useful as probe tips in spin-
polarized scanning tunneling microscopes [3]. AFMs are
materials with spontaneous magnetization below a critical
Néel temperature at which the magnetic moments of two
(or more) sublattices point into opposite directions, such
that the net magnetic moment of the AFM vanishes.
External magnetic fields cannot be used to manipulate
the strongly coupled magnetic moments of AFMs. An
alternative for magnetic fields to excite ferromagnets
(FMs) is the current-induced spin-transfer torque (STT)
[4]. Since the electric current is spin-polarized on an
atomic scale, the STT phenomenon may excite the anti-
ferromagnetic order parameter. It is not obvious whether
the STT is strong enough and how different sublattices are
affected.

Recent theoretical studies [5–7] predicted that, in spin
valves with uncompensated antiferromagnets, an angular
resistance (AR) effect can be expected. Reversal of the
antiferromagnetic order parameter is equivalent with a
phase shift by a half period. Furthermore, STT is not an
interface effect as in ferrromagnets but effective over the
whole AFM. Very recently, strong experimental evidence
of STT between AFM and FM has been reported [8]. In
addition, the resistance of antiferromagnetic domain walls
(AFDWs) in chromium has been measured [9].

In contrast to FMs, AFMs have much smaller shape
anisotropies which makes manipulation of its magnetic
moments easier—provided one can apply a sizable spin
torque on the moments. What is the magnitude of the spin
torque for an atomic scale spin polarization? Can an atomic
scale spin polarization give rise to an observable AR
effect? These are the questions that we attempt to answer
in this work.
�-FeMn is an AFM used as a pinning layer in spin

valves, and we demonstrate that an electric current can
induce angular momentum transfer between magnetic mo-

ments in AFMs. By a detailed analysis of the current and
nonequilibrium charge densities, we show that an atomic
scale spin polarization exists even for compensated AFMs.
A sizable AR is predicted in antiferromagnetic spin valves
(AFSVs). In an AFDW, the spin torque is effective not only
around the domain wall center but throughout the entire
AFM, which can be understood by the suppressed spin
precession.

In our calculations, the atomic potential was determined
in the framework of the tight-binding (TB) linear muffin-
tin-orbital (MTO) method based on density functional
theory in the local density approximation [10] and an
exchange-correlation potential parametrized by von Barth
and Hedin [11]. The self-consistent crystal potentials were
used as input to a TB-MTO wave-function-matching cal-
culation, and the scattering wave functions of the whole
system were obtained explicitly [12]. To model noncol-
linear magnetic configurations in AFDWs, a rigid potential
approximation is applied, which is a good approximation
for sufficiently wide domain walls [13].

The spin current and charge density can be calculated
from the scattering wave functions. The torques acting on
an atomic plane are defined as the difference between
incoming and outgoing spin current [14]. Finally, we focus
on transport along the direction perpendicular to the plane
fcc(111) as illustrated in Fig. 1(b), where four atoms con-

FIG. 1 (color online). (a) Magnetic structure of �-FeMn.
(b) fcc(111) plane of �-FeMn, where the dashed lines connect
the atoms in a unit cell.
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nected by the dashed lines form a unit cell. fcc(111) is a
compensated plane with zero net magnetic moment in each
layer.

The magnetic structure of �-FeMn is shown in Fig. 1(a).
This configuration has been observed experimentally [15]
and confirmed to be energetically favorable by ab initio
calculation [16]. There are four inequivalent atoms in a unit
cell. The magnetic moments of Fe2 and Mn1 and those of
Fe1 and Mn2 point in opposite directions. Our calculation
[17] yields the magnetic moments as mFe � 1:4�B and
mMn � 1:9�B.

When a current passes through an antiferromagnetic
material, the current-induced nonequilibrium charge den-
sity integrated over the atomic sphere of an atom is spin-
polarized. We define the polarization of atom � as P�S �
���" � �

�
# �=��

�
" � �

�
# �, where ��

"�#�
is the spin-resolved

nonequilibrium charge density. " ( # ) indicates the electron
spin parallel (antiparallel) to the spin quantization axis.

In Fig. 2, we plot P�S for a single FeMnjCu interface. We
group the system into four inequivalent sublattices accord-
ing to the inequivalent atoms in the unit cell of �-FeMn. A
nonzero polarization is found even at the Cu side. The sum
of the spin polarizations of the four sublattices vanishes in
each layer. These results show that a compensated anti-
ferromagnet injects a spin polarization into a normal metal
that oscillates on an atomic scale.

Let us consider now an AFSV denoted as
FeMn1���jCujFeMn2jCu, where an infinitely thick
FeMn1 serves as the fixed layer and FeMn2 as the free
layer. The z axis of spin space is set along the magnetiza-
tion of the free layer, and � gives the relative angle between
both order parameters. In our calculations, the thicknesses

of the Cu spacer and the FeMn2 free layer are chosen to be
both 10 monolayers (ML) [18].

The top panel in Fig. 3 illustrates the magnetic structure
of the so-called parallel configuration (� � 0

�
). Here and

in the following, we group the four sublattices into two
according to the direction of their magnetic moments.
When the magnetization of FeMn1 is rotated from � �
0
�

to � � 180
�

(the antiparallel configuration), the electric
resistance changes.

The bottom panel in Fig. 3 gives the spin-polarized
current at the two sublattices. When the magnetizations
of the two AFM layers are collinear, there is no net current
spin polarization. However, the spatial distribution of spin-
polarized current is not trivial. In fact, the spin-polarized
currents on the two sublattices do not vanish even in Cu.
They are identical in magnitude but oppositely spin-
polarized. Another finding is that the spin-polarized cur-
rent oscillates between the two sublattices and is not
conserved within one sublattice.

The AR ratio in terms of conductance as �G�0
�
� �

G�180
�
��=G�180

�
� amounts to a measurable 5%. The re-

maining question is the robustness of this AR effect in the
presence of interfacial disorder. We modeled disorder by
an interfacial alloy with a lateral supercell method [12].
For a 1 ML �FeMn�1�xCux interfacial alloy, the AR de-
pendence on interfacial alloy concentration x is shown in
Fig. 4, which indicates that the AR is somewhat suppressed
in the presence of disorder but should remain to be
observable.

It is interesting to investigate the STT due to the atomic
scale spin-dependent scattering. Before going into the
numerical results, we analyze the symmetry of the STT.
For one sublattice, similar to that of FM, the torque on a
local magnetic moment m is proportional to m	M	m

FIG. 2 (color online). Layer-resolved spin polarization of non-
equilibrium charge density P�S on the four inequivalent sublatti-
ces of the FeMnjCu system, where FeMn occupies the 1st–40th
layers and Cu the 41st–80th layers. The electron current flows
from FeMn to Cu. Inset (a) gives the PS on the Cu side for the
inequivalent sublattices corresponding to Fe2 and Mn1. Inset (b)
gives the PS on the Cu side for the inequivalent sublattices
corresponding to Fe1 and Mn2.

FIG. 3 (color online). Top panel: Cartoon of the parallel con-
figuration � � 0

�
of an AFSV. The red and blue arrows denote

the two sublattices A and B, respectively. Bottom panel: The
layer-resolved z component of spin-polarized current Izs?, where
the subscript? denotes the current perpendicular to the fcc(111)
plane and the red circles (blue squares) represent the spin-
polarized current on the sublattice A (B).
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(in-plane) and m	M (out-of-plane), where M denotes
the source of spin current. For another sublattice, both m
and M are reversed. The in-plane torque is also reversed,
whereas the out-of-plane torque remains unchanged.
Because the in-plane torque Tk on two sublattices is iden-
tical in magnitude and opposite in direction and the mag-
netization of two sublattices points in opposite directions,
the net effect of STT tends to rotate those moments to-

gether. In contrast to Tk, the out-of-plane torque T? acts
identically on the two magnetic sublattices. As the ex-
change coupling in the AFM is strong, out-of-plane torques
will not result in any significant effect on the dynamics of
the magnetic moments.

As shown in Fig. 5(a), the spin torque in the AFM layer
oscillates deep into material which differs from a conven-
tional FM spin valve [19,20]. The angular dependence of
the total in-plane torque acting on a sublattice (Fe1&Mn2)
in FeMn2 is shown in Fig. 5(b). For � � 150

�
, the torque

(4:1	 10�4 eVb=�B) acting on the surface atoms is much
smaller than that in a FM spin valve (
10�3 eVb=�B) [21].
However, due to the slow decay of the spin torque in
AFMs, the integrated torque on per atom of AFMs
(2:4	 10�4 eVb=�B) is comparable to that in FMs.

A similar spin-transfer effect should occur in AFDWs.
As domain wall physics in AFMs has not been fully under-
stood [22], we simply consider a Bloch-like domain wall
which could exist in the experiment [23], as shown in
Fig. 6(a). The configuration is described by ��y� � �

2 �

arcsin�tanh�y�y0

�DW
��, where �DW is the characteristic length

which is selected to be 4 ML and y0 the center of the wall.
The spin direction in each monolayer along the wall is
shown in Fig. 6(b). The change of the total conductance
due to the formation of a wall is 2.8% for a 4 ML thick

FIG. 5 (color online). (a) The layer-resolved in-plane
torque Tk on one sublattice (Fe1&Mn2) of FeMn2 in
FeMn1���jCu�10ML�jFeMn2�10ML�jCu, as shown by the car-
toon. Here � � 150

�
, electrons flow from FeMn1 to FeMn2, and

FeMn2 is located at 15 � I � 24. (b) Angular dependence of the
in-plane torque Tk on the sublattice (Fe1&Mn2) of FeMn2 in the
same system.

FIG. 6 (color online). (a) Schematic view of the AFDW, in
which two sublattices are indicated by the green and blue arrows,
the magnetization is rotated in the plane by an angle �, and the
electrons are injected from the left side. The in-plane torque
directions are indicated by the red arrows. (b) � as the function of
position. (c) Spin torques acting on the sublattice (Fe1&Mn2) in
each monolayer with initial configuration, where TX and TZ
denote the in-plane components and jTkj is the absolute value
of in-plane torques.

FIG. 4. Cu concentration x dependence of AR in the system
FeMn1jCu�10ML�jFeMn2�10ML�jCu.

PRL 100, 226602 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
6 JUNE 2008

226602-3



domain wall, which is comparable to that in a FM with the
same width.

Figure 6(c) shows the in-plane torque exerted on one
sublattice (Fe1&Mn2) as a function of position in the
domain wall. There is a substantial STT in the region far
away from the domain wall center. This is attributed to the
spin degeneracy of the electronic band structure in the
AFM. The injected spin can penetrate and precess coher-
ently until deep into the AFM. As a result, STT in AFM is
very nonlocal, at least in the absence of disorder scattering.

We investigate the dynamics of the AFDW with the
Landau-Lifshitz-Gilbert (LLG) equation [24] by using
our calculated STT. An AFM with two sublattices is de-
scribed by two sets of coupled LLG equations. Here we
decouple the equations by assuming that the magnetiza-
tions of two sublattices in the same layer are antiparallel to
each other at any time. This should be reasonable due to a
strong antiferromagnetic coupling between the two
sublattices.

To investigate dynamics of the domain wall in the
presence of a current, we follow the method of Ohe and
Kramer [25], who studied FM domain walls. This method
consists of several steps: (i) Given a domain wall configu-
ration, we calculate the STT acting on each site under a
certain current density; (ii) the obtained spin torque at each
site is substituted into the LLG equation to obtain a set of
equations for each site in the domain wall at a given time t;
(iii) by integrating the LLG equation, we obtain the domain
wall configuration after an interval at t0 � t� �t; (iv) once
a new domain wall configuration is obtained, we can
calculate the STT again, and the process is repeated. The
interval �t between two consecutive steps is chosen small
enough to guarantee numerical convergence of the
solution.

In particular, a magnetic anisotropy constant of 1:35	
105 erg=cm3, exchange stiffness constant of 0:94	
10�9 erg=cm, magnetization of sublattice of 650 G, and
Gilbert damping constant of 0.1 are used in our calculation.

Under a current density of 5	 107 A=cm2 and starting
from the initial domain wall configuration mentioned
above, we obtained results for 10 time steps of �t �
2 ps. The domain wall moves in the �Y direction, and
the estimated velocity is 4 m=s. In contrast to the FM
domain wall, the velocity is maintained due to the vanish-
ing demagnetization field. For the same reason, when no
pinning field is taken into account, the critical current that
sets the AFDW into motion is also expected to be very
small as compared to a FM domain wall.

In summary, we find an atomic scale spin polarization in
completely compensated AFMs. An STT can be induced
by an electric bias. In AFSVs, a sizable AR is predicted,
and the STT is found to be comparable to that in conven-
tional FM spin valves. In AFDWs, the torques turn out to

be nonlocal. The spin dynamics of AFDWs is studied by
including the STT in the LLG equation for AFMs.
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