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The occurrence of nonadiabatic effects in the vibrational properties of metals has been predicted since
the 1960s, but hardly confirmed experimentally. We report the first fully ab initio calculations of
nonadiabatic frequencies of a number of conventional (hcp Ti and Mg) and layered metals (MgB2,
CaC6, and other intercalated graphites). Nonadiabatic effects can be spectacularly large (up to 30% of the
phonon frequencies) in both cases, but they can only be experimentally observed in the Raman spectra of
layered compounds. In layered metals nonadiabatic effects are crucial to explaining the observed Raman
shifts and linewidths. Moreover, we show that those quantities can be used to extract the electron
momentum-relaxation time.
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The adiabatic Born-Oppenheimer approximation is the
state of the art in first-principles calculations of vibrational
properties in solids. In metals, even if in principle unjusti-
fied, this approximation generally leads to phonon disper-
sions in very good agreement with experimental data [1].
Indeed violations of the adiabatic Born-Oppenheimer ap-
proximation are hardly visible in solids. Engelsberg and
Schrieffer suggested [2] that nonadiabatic (NA) effects
could lead to a significant renormalization of zone-center
optical phonon frequencies. An intense effort has been
devoted to detect measurable NA effects in metals, mainly
by Raman spectroscopy [3–5]. In fact, Raman spectros-
copy allows the determination of phonon frequencies in
metals although the corresponding cross sections are weak
because of the small penetration length of light. The de-
tected NA phonon frequencies are typically some percent
larger than the adiabatic phonon frequencies.

Recently it has been shown that NA effects are crucial to
interpret the dependence of Raman spectra on doping [6,7]
in graphene and on doping [8,9] and on diameter and
temperature [10] in nanotubes. However, despite being a
central issue for the physics of graphene-based systems,
the NA phonon frequency shift �! (the difference between
adiabatic and NA phonon frequencies), although measur-
able, is less than 1% of the adiabatic phonon frequency.
Moreover, these systems have lower dimensionality and a
peculiar electronic structure; it is then unclear whether
sizable NA effects can actually be observed in truly
three-dimensional bulk metals.

Layer metallic materials, such as graphite intercalated
compounds (GICs), are three-dimensional (3D) metals
possessing a considerable anisotropy along one direction.
Variation of the interlayer distance by intercalation or
applied pressure allows one to bridge the gap between
two-dimensional monolayer systems (such as graphene)
and truly three-dimensional systems [11]. Thus these met-
als are ideal to judge the role of reduced dimensionality in
determining nonadiabatic effects. CaC6 is also an 11.5 K
superconductor [12] with an intermediate electron-phonon
coupling � � 0:83 [13]. Most interestingly, the recent

measurement of CaC6 Raman spectrum [14] shows that
the phonon frequencies related to in-plane C vibrations are
almost 80 cm�1 larger than those obtained from density-
functional theory (DFT) adiabatic calculations. This result
is puzzling since in graphite the adiabatic result for the E2g

phonon frequency is 1577 cm�1, in excellent agreement
with the experimental value of 1582 cm�1.

In this Letter we develop a first-principles theoretical
framework to calculate the magnitude of NA effects on
zone-center optical phonons in metals. We identify the
general conditions for having sizable adiabatic effects in
3D bulk metals and analyze the experimental constraints
that can hinder the observation of NA effects. We demon-
strate that the occurrence of NA effects is not limited to
reduced dimensionality, but it is a general property of
metals. We apply our approach to GICs, MgB2 and bulk
metals, finding giant NA effects. To our knowledge, this is
the first systematic implementation and study of nonadia-
batic effects within first-principles.

Nonadiabatic effects due to the treatment of the
electron-phonon coupling in the Migdal approximation
(neglecting of vertex corrections in the adiabatic limit)
are usually of the order

�����������
m=M

p
, where m and M are the

electronic and ionic mass, respectively, and thus generally
very small. Engelsberg and Schrieffer showed that NA
renormalization of adiabatic phonon frequencies, a larger
effect, unrelated to the neglecting of vertex corrections,
and not of the order of

�����������
m=M

p
, can be observed if the

following two conditions are satisfied [2,3]:

 jq � vFj � ! (1)

 @!� �; (2)

where vF is the Fermi velocity, q is the phonon wave
vector, ! is the phonon frequency, � � @=�, and � is the
electron momentum-relaxation time (Drude) of the elec-
trons near the Fermi surface due to all possible momentum-
exchange scattering mechanisms.
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The first condition is verified for optical phonons of
small wave vector whose phase velocity is larger than the
electronic Fermi velocity. Even if in principle Eq. (1) can
be fulfilled in any system, provided q is small enough, in
practice the penetration length of the laser light limits the
smallest exchanged q in Raman experiments. The fact that
Eq. (1) is experimentally difficult to satisfy in 3D metals
explains why the observation of NA effects in these sys-
tems has been somehow disappointing.

The second condition states that the electron
momentum-relaxation time must be much larger than the
phonon period. This implies that the electron band-
population dynamic is too slow to follow the atomic mo-
tion and thus the dynamic is nonadiabatic [7]. Equation (2)
is usually verified in pure and well crystallized samples at
low temperature. Thus Eq. (1) is the main limitation to the
observation of NA effects.

This limitation can be circumvented considering a sys-
tem having small vF along certain directions. For example
layered metals are usually characterized by a small vF
component perpendicular to the layers. Since the samples
are usually cleaved parallel to the layers and Raman ex-
periments are performed perpendicularly to the freshly
cleaved surface, the scalar product q � vF is small. It is
instead also evident that condition (1) is easily verified in
2D or 1D systems, since Raman experiments are per-
formed with an incident light of wave vector q perpen-
dicular to the sample spatial dimension(s) and, thus, to vF.
In fact, NA effects have been consistently observed in
doped graphene and nanotubes in the past few years [6–9].

NA effects can be taken into account by applying time-
dependent perturbation theory to DFT. Neglecting the
electron momentum-scattering rate (� � 0), the dynami-
cal matrix (D) for a phonon at q � 0 (�) and the first-order
variation of the electronic charge density (�n) are [15]

 

D��!� �
2

Nk

X
kn;m�n

jDkm;knj
2	fkm � fkn


�km � �kn � @!

�
Z
n�r��2Vb�r�dr

�
Z

�n��r; !�K�r; r0��n��r; !�drdr0 (3)
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�km � �kn � @!
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(4)

where n�r� is the charge density, the summation is per-
formed on Nk k points, Dkm;kn � hkmj�Vscjkni is the
deformation potential proportional to the electron-phonon
matrix element, �Vsc and �2Vb are, respectively, the first
derivative of the Kohn-Sham potential and the second
derivative of the bare (purely ionic) potential with respect
to the phonon displacement. The kernel K�r; r0� is the
second functional derivative of the Hartree exchange and
correlation potential with respect to the densities at r and

r0. Finally, fkn is the Fermi function for a Bloch state jkni
having band energy �kn. The NA frequencies have to be

computed self-consistently from !NA �
����������������������������
D��!NA�=M

p
.

Since in Eqs. (3) and (4) only interband transitions con-
tribute, if @!NA � j�ke � �koj, i.e., if the phonon energy
is much smaller than the direct gap between empty (�ke)
and occupied (�ko) states, D��!

NA� ’D��0�. We verified
numerically that in all systems considered in the present
study this approximation applies and that the results ob-
tained with D��!NA� and D��0� are indistinguishable.

The adiabatic frequency!A is as usual calculated within
static perturbation theory, as in Ref. [1]. Note that !A ����������������������
D��0�=M

p
since in the adiabatic case the intraband (m �

n) term is present [6] and �! � !NA �!A is

 @�! ’
1

Nk

X
kn

@jDkn;knj
2

M!A ���F � �kn� � n��F�g2��F�;

(5)

where n��F� is the density of states at the Fermi level,
g2��f� � @jDkn;knj

2=2M!A is the square electron-phonon

matrix element due to intraband transitions, and g2��F� is
the average of g2��f� over the Fermi surface.

We apply our first-principles approach to obtain E2g [16]
nonadiabatic phonon frequencies at � for a number of
GICs, for MgB2 and for bulk hcp Ti (see [17] for computa-
tional details). The results are illustrated in Fig. 1 for GICs
and are collected in Table I for all the systems. In general,
huge �! values (>60 cm�1) are found in all layered
compounds. The most spectacular nonadiabatic effects
are found in KC8 (�! � 310 cm�1, 20% of !A) and in
MgB2 (�! � 230 cm�1, 30% of !A). Even in bulk Ti we
find a significant shift, �! � 12 cm�1 (more than 8% of
!A). Interestingly, despite the structural similarity, in bulk
Mg no NA effect exists. From Fig. 1 the experimental
Raman data [19–23] in all GICs are in much closer agree-
ment with !NA than with !A, whereas in MgB2 Raman
data lie between the two theoretical frequencies. In Ti,
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FIG. 1. Calculated adiabatic (open symbols) and nonadiabatic
(solid symbols) E2g [16] frequencies of several GICs, compared
to measurements. The line is the 1:1 ratio.
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contrary to the layered metals, the observed Raman fre-
quencies [26] are much closer to the adiabatic value.

To refine our model, we now compute phonon frequen-
cies in the presence of a finite electron momentum-
relaxation rate �,!� � !A � �!�. �!� can be obtained
using electron and hole Green functions dressed by the
interaction (electron-electron, electron-phonon, and
electron-defect) in the calculation of the phonon self-
energy and of the dynamical matrix [3,27]. Assuming
(i) � independent of energy and (ii) n��� and g��f� con-
stants for bands within �F � �, Refs. [3,27] obtained

 @�!� ’ @�!
�@!A�2

�@!A�2 � �2 : (6)

Note that when @!A � �, �!� ’ �! and the experimen-
tally observed phonon frequency is !NA; i.e., the system is
in the purely NA regime. On the contrary, for @!A � �,
�!� � 0 and the measured phonon frequency is !A; i.e.,
the system is completely adiabatic.

The linewidth of an optical phonon mode at � is also
affected by the presence of a finite momentum-relaxation
rate. The decay of a phonon into noninteracting (un-
dressed) electron-hole pairs (� � 0) is forbidden for a
zone-center optical mode if the direct gap is larger than
the phonon energy (@!� j�ke � �koj). This condition
has been verified in all layered systems considered here,
thus a zero linewidth should be measured [28,29]. However
in all stage-1 GICs and in MgB2, very large linewidths,
hardly explainable in term of anharmonicities, are mea-
sured. Analogously to the calculation of !�, a finite
momentum-scattering rate � can be considered in the

evaluation of the imaginary part of the phonon self-energy
[3,27,30]. This leads to the following expression for the
phonon full linewidth at half maximum due to the phonon
decay in dressed electron-hole pairs (�EPC

� ):

 

�EPC
�

2
’ @�!

�@!A

�@!A�2 � �2 : (7)

Equation (6) can be used to extract �. Setting �!� �

!exp �!A, we obtain � from the inversion of Eq. (6).
Then � is inserted in Eq. (7) to determine �EPC

� and the
results are reported in Table I. The comparison between
�EPC
� and the experimental Raman linewidths �exp is in

Fig. 2. The agreement is overall very good, except for LiC6

and RbC8. Note that the experimental linewidth includes
all sorts of broadening (including inhomogeneous effects),
while �EPC

� includes only the phonon decay into dressed
electron-hole pairs. Thus when �exp � �EPC

� the dominant
broadening is the latter one. This is the case in MgB2

[30,31], and in most GICs. Moreover, by comparing with
the universal curves of Eqs. (6) and (7) (Fig. 3), we deduce
that our estimate of the relaxation time is a good indicator
of the nonadiabaticity degree.

As an example, our results quantitatively indicate that
MgB2, although being characterized by a huge �!, has a
smaller �!� and a relatively short momentum-relaxation
time. It is thus a mostly adiabatic system, even though
�!� is still very large. On the contrary, all GICs have
relatively small �’s, falling in the left part of the universal
curves of Fig. 3, and are thus mostly nonadiabatic. The
result on hcp Ti actually indicates that all metals might
have NA frequencies at � significantly different from the
adiabatic ones, but that they cannot be observed by Raman
spectroscopy because the condition (1) is not verified in
experiments. In other words, nonadiabaticity is not a
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FIG. 2. Calculated EPC linewidths [Eq. (7)] versus total mea-
sured ones.

TABLE I. Calculated adiabatic and nonadiabatic E2g [16]
phonon frequencies, experimental frequencies, calculated �! �
!NA �!A, calculated �, calculated electron-phonon coupling
(EPC) linewidth, experimental linewidth of several GICs and of
MgB2 (all in cm�1). Measurements are from Refs. [14,19–25].
For Mg and Ti � cannot be determined from our theory. Since
our best NA frequency of graphite is 1578 cm�1, we have
upshifted by 4 cm�1 all the adiabatic/NA frequencies of GICs.

!A !NA !exp �! � �EPC
� �exp

LiC6 1362 1580 1595 218 0 0 70
LiC12 1492 1591 1590 99 151 20 66
KC8 1223 1534 1522 311 245 120 157
KC24 1488 1571 1599 83 0 0 26
RbC8 4 K 1300 1525 1490 225 558 163 100
RbC8 77 K 1300 1525 1480 225 650 180 120
CaC6 5 K 1446 1529 1525 83 325 36 71
CaC6 300 K 1446 1529 1511 83 761 68 111
SrC6 1459 1530 � � � 71 � � � � � � � � �

BaC6 1462 1521 � � � 59 � � � � � � � � �

MgB2 21 K 538 761 600 224 867 199 197

Mg 122 123 122.5 1 * * *
Ti 139 151 141 12 * * *
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unique property of low-dimensional or layered systems,
and can occur even in conventional metals.

In conclusion, we provide a quantitative first-principles
theoretical framework to explain the difference between
the reported experimental E2g [16] mode frequencies and
the (ordinary) adiabatic calculated ones in several layered
metals. We have shown that giant nonadiabatic effects
occur in these systems. NA effects are in principle very
relevant even in bulk metals, but difficult to measure.
Finally, the electron momentum-relaxation time can be
extracted from Raman line positions and widths and is a
good indicator of the degree of nonadiabaticity.

Calculations were done at IDRIS (CP9-71387).
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