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14 rue d’Issoudun, BP6744, 45067 Orléans Cedex 2, France
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Instabilities in dusty plasmas are frequent phenomena. We show that some instabilities can be described
by mixed-mode oscillations often encountered in chemical systems or neuronal dynamics and studied
through dynamical system theories. The time evolution of these instabilities is studied through the change
in the associated waveform. Frequency and interspike interval are analyzed and compared to results
obtained in other scientific fields concerned by mixed-mode oscillations.
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Solid dust particles from a few nanometers to centi-
meters are often present in plasmas and are at the origin
of a wide variety of new phenomena. Plasmas containing
dust particles are called dusty or complex plasmas. These
media are encountered in many environments such as
astrophysics, industrial processes, and fusion devices.
Dust particles can come from regions in the plasma vicinity
or can be formed in the plasma due to the presence of
molecular precursors. In most cases, they acquire a nega-
tive charge by attaching plasma free electrons. In plasma
reactors, dust clouds are often characterized by a central
dust-free region. This region, usually named ‘‘void’’ [1–6],
is considered to be maintained by an equilibrium between
inward electrostatic and outward ion drag forces. Under
certain conditions, this equilibrium can be disturbed, re-
sulting in self-excited low frequency oscillations of the
void size. The obtained instability, consisting of successive
contractions and expansions of the void, is named ‘‘heart-
beat’’ [1,4,7,8] due to its apparent similarity with a beating
heart. Nevertheless, the dust cloud behavior is more com-
plex than it could be supposed [7,8]. This self-excited
instability can stop by its own through an ending phase
characterized by failed contractions that appear more and
more numerous as the end approaches. The phenomena
sustaining the instability evolve progressively until a new
stable state is reached. This phase can be studied by
analyzing the discharge current or the plasma glow emis-
sion. These signals have a well-defined shape that seems
similar to mixed-mode oscillations (MMOs).

MMOs are complex phenomena consisting of an alter-
nation of a varying number of small amplitude oscillations
in between two larger ones (also named spikes). Small and
large amplitude oscillations are often considered as, re-
spectively, subthreshold oscillations and relaxation mecha-
nisms of the system. These MMOs are encountered in a
wide variety of fields. In chemistry, reaction kinetics can
take the form of MMOs [9,10] like in the intensively
studied Belousov-Zhabotinskii reaction [11,12]. In natural
sciences, MMOs are the subject of an intense research [13–
15] since their observation in the Hodgkin-Huxley model

of neuronal activity [15,16]. In this context, they are
strongly related to spiking and bursting activities in neu-
rons [17,18]. In plasma physics, MMOs have been reported
in dc glow discharge [19,20] but to the best of our knowl-
edge, no evidence of MMOs in dusty plasmas have been
reported yet. Because of the broad diversity of scientific
domains concerned by MMOs, they induced a lot of re-
searches and several approaches have been explored. These
studies are based on dynamical system theories, like, for
example, canards [13,15,21], subcritical Hopf-homoclinic
bifurcation [16,22] or Shilnikov homoclinic orbits [23,24].

In this Letter, we report for the first time on the existence
of MMOs in dusty plasmas. An example is analyzed and its
main characteristics, like typical frequencies and evolution
of interspike interval, are explored. Particular attention is
paid to the evolution of the number of small amplitude
oscillations in between consecutive spikes. We thus under-
line very close similarities with typical MMOs observed in
neuronal activity and chemistry.

Experiments are performed in the PKE-Nefedov reactor
[2,25]. A capacitively coupled radiofrequency (rf at
13.56 MHz) discharge is created between two planar par-
allel electrodes. The static argon pressure is comprised
between 0.5 and 1.6 mbar and the applied rf power is
around 2.8 W. Dust particles are grown by sputtering a
polymer layer deposited on the electrodes and constituted
of previously injected melamine formaldehyde dust parti-
cles. A few tens of seconds after plasma ignition, a three-
dimensional dense cloud of visible grown dust particles
(size of a few hundreds of nanometers) is formed. This
observation is performed by laser light scattering with
standard CCD cameras. The discharge current (related to
electron density) is measured on the bottom electrode.
Plasma emission in the center is recorded thanks to an
optical fiber with a spatial resolution of a few millimeters
[8]. These two diagnostics give rather similar results and
are used to characterize the ending phase of the heartbeat
instability. When void contraction occurs, a high amplitude
peak is observed in the signals [8]. Failed void contractions
appear as small amplitude oscillations, i.e., failed peaks.
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The first two oscillations in Fig. 1(a) are representative of a
typical fully developed heartbeat signal [7] without any
failed peak. The observed shape is the one used as refer-
ence, with a main peak corresponding to the fast contrac-
tion and a slowly increasing signal (like a shoulder) during
the slow void reopening [8]. Then, a transition between this
regime and a regime with one failed contraction [arrow in
Fig. 1(a)] occurs. At the instant where a large amplitude
oscillation is expected, a decrease in the signal occurs. The
spike occurrence is then delayed. A similar behavior is
obtained in the optical signal, as observed in Fig. 1(b) for a
transition between one and two failed peak regimes. Signal
shape clearly corresponds to typical MMOs and is remark-
ably similar to waveforms measured or modeled in chemi-
cal systems [9,10,12,24] or in neuronal dynamics
[13,15,18,26,27]. For the sake of simplicity, classical no-
tation for MMOs [9,12] will be used in the following. Thus,
a pattern characterized by L high amplitude oscillations
and S small amplitude ones will be noted LS. As an
example, Fig. 1(a) is a transition between 10 and 11 states,
whereas Fig. 1(b) corresponds to a 11–12 transition. A
closer look to this last transition is shown in Fig. 1(c) where
the first 12 state is superimposed on the last 11 state. A
vertical dotted line marks the place where signals differ. As
it can be observed, signals are nearly identical until this
time and no clear indication announces this next change. In
dynamical systems, noise can induce drastic changes in
system behavior. In the present study, due to a low signal to
noise ratio, analyses cannot be performed on raw data.
Thus, data in Fig. 1 have been processed using wavelet
techniques (checking that no signal distortion was added)
in order to remove noise and thus its effect will not be
investigated.

As the similarity between our signals and MMOs is
established, a more complete study can be performed.
For that purpose, electrical signal evolution has been re-

corded until the complete end of the instability. A typical
sequence is shown in Fig. 2(a). The signal mean value is
almost constant and the instability consists of a succession
of high amplitude spikes separated by an interspike interval
(ISI) increasing as one goes along. As in Fig. 1, low
amplitude oscillations appear in between these spikes giv-
ing the classical shape of MMOs. The increase in the ISI is
thus a consequence of the occurrence of more and more
failed peaks. As an example, the insert in Fig. 2(a) shows a
14–15 transition (this time series starts during the 13 state).
Just after the transition, the memory that a transition oc-
curred is visible. Indeed, the new failed peak [Fig. 2(a)
inset] has a higher amplitude than the other ones, keeping
partly the characteristics of a spike. Then, its amplitude
decreases during the next few patterns until reaching the
same amplitude as the other failed peaks. These MMOs
can be also characterized by their corresponding phase
space. Figures 2(b) and 2(c) are, respectively, 3D and 2D
phase spaces of a representative part of the time series
presented in Fig. 2(a). To obtain these attractors, an appro-
priate time delay � has been calculated using the mutual
information method proposed in [28] in the framework of
the Belousov-Zhabotinskii reaction. The main large trajec-
tory in phase space corresponds to the large amplitude
variation during spikes. A smaller loop (indicated by an
arrow labeled 1) corresponds to a short additional peak
sometimes observed on the right part of the main spikes
[7,8]. This phenomenon is observed in Fig. 1(a) and does
not alter the present study. Small amplitude oscillations are
represented by loops in a tiny region indicated by an arrow
labeled 2 [Figs. 2(b) and 2(c)]. In this region, the number of
loops corresponds to the number of failed peaks (3 loops
for the 13 state, for example) like observed in [15]. The
analysis through ISIs is often used in neuroscience for
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FIG. 1 (color online). (a) Electrical signal with a transition
between 10 and 11 states (arrow: failed peak). (b) Optical signal
with a transition between 11 and 12 states. (c) Superimposition of
the two consecutive states shown in (b).
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FIG. 2 (color online). (a) Evolution of the electrical signal
during the instability ending phase. The insert is a zoom of a
transition between 14 and 15 states. Corresponding phase space
is represented in (b) 3D and (c) 2D. Arrows labeled 1 and 2 show,
respectively, the loop due to the additional peak observed on the
right-hand side of spikes [see Fig. 1(a)] and the region containing
the loops corresponding to failed peaks.
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characterizing neural activity [18,29]. Figure 2(a) shows
that the ISI increases by the progressive addition of failed
peaks until the instability stops. This behavior is better
observed by performing a spectrogram, i.e., a time-
resolved fast Fourier transform (FFT) of this time series
[Fig. 3(a)]. This analysis clearly shows a step-by-step
decrease of the characteristic frequencies until no more
oscillations are observed (at�17:7 s). The main frequency
corresponding to the spike occurrence is indicated by an
arrow labeled 1. Because of the shape of the time series,
harmonics are also obtained. Figure 3(a) clearly shows that
the frequency jumps become smaller as time increases.
Moreover, the duration of a given LS state decreases with
time. These last two properties are also brought to the fore
by performing a global FFT of the time series [Fig. 3(b)].
Clearly separated peaks are observed, confirming the step-
by-step evolution of the frequency. The main peaks are
located at 20.5, 17.5, 15.1, 13.3, and 11.8 Hz. Their ampli-
tude is proportional to the duration of each LS state. As in
Fig. 3(a), it is observed that this duration decreases with
time (as the frequency). The amplitude of the first peak at
20.5 Hz is not representative because the time series started
to be recorded during the 20.5 Hz phase (13 state) and part
of this phase is thus missing. Another correlation that can
be made with Fig. 3(a), is the decrease of the frequency
jumps. Indeed, the frequency jumps are equal to �f � 3,
2.4, 1.8, and 1.5 Hz. Finally, Fig. 3(a) gives also the
frequency of the failed peaks (arrow labeled 2). It is
interesting to note that this frequency does not strongly
evolve but only slightly decreases with time (variation of
about 10%).

In order to improve the analysis of ISI, the occurrence
time of each spike is deduced from the time series pre-
sented in Fig. 2(a). Spike position is obtained by detecting

points exceeding a correctly chosen threshold. The direct
time evolution of the ISI can thus be obtained as shown in
Fig. 4(a) (blue dots). A very clear step-by-step behavior, as
in [14,16], is obtained with ISIs varying from �0:05 s
(�20:5 Hz, 13 state) to �0:4 s (�2:5 Hz, 140 state). Each
step corresponds to the occurrence of a new failed peak,
i.e., transition from a LS to a LS�1 state. Close to the end of
the instability (after 15 s), the system evolves faster and
faster with transitions between LS and LS�n states with n
increasing from 2 to 5. The global time dependence (with-
out taking into account the steps) of ISI evolves as a�
b=�t0 � t� as in [16,22]. Parameters a, b and t0 are fitted to
the experimental data and the corresponding curve is
superimposed in Fig. 4(a) (orange curve). The parameter
t0 corresponds to the time of the asymptotic limit (�19 s)
where ISI tends to infinity which is often considered to be
characteristic of a homoclinic transition [16,30]. Fig-
ure 4(a) also shows that the ISI during a LS state is not
perfectly constant and slightly increases (left hand side
insert). This increase is nonlinear (like, for example, in
[16]) and seems to become faster close to the transition
between LS and LS�1 states. Thus, it appears that this
transition is the consequence of a progressive increase of
the ISI. It can be noted that this ISI increase during a given
LS state can also be fitted by a function a� b=�t0 � t�
(blue curve in left hand side insert) with different a, b, and
t0 than the ones obtained from the fit of the global curve.
This behavior was not so clearly marked in Fig. 3(a) due to
the smoothing induced by the time window used for cal-
culating the time resolved FFT. Nevertheless, a slight
decrease in frequency during each LS state can be observed
on the high order harmonics. As in Fig. 3(b), the duration
of each LS state can also be analyzed by performing a

Time (s)

F
re

qu
en

cy
 (

H
z)

0 2 4 6 8 10 12 14 16 18

20

40

60

80

100

120

140

160

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

x 10
−3

Frequency (Hz)

P
ow

er
 s

pe
ct

ru
m

2 

1 

(a) 

(b) 

FIG. 3 (color online). (a) Spectrogram of the time series pre-
sented in Fig. 2(a). Arrows labeled 1 and 2 show the occurrence
frequency of, respectively, spikes and small amplitude oscilla-
tions. (b) Power spectral density of the same signal.
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FIG. 4 (color online). (a) Evolution of the ISI during the
instability ending phase: measurements (blue dots) and corre-
sponding fit (orange curve). The two inserts are zooms showing,
Left: slight evolution of ISI during a LS phase, Right: unstable
transition between two phases. (b) Corresponding histogram of
ISIs with an exponential fit (green curve).
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histogram of ISIs [Fig. 4(b)]. This histogram is character-
ized by a clear multimodal pattern that can be fitted by a
decreasing exponential function [green curve, first bar is
not taken into account due to missing data as in Fig. 3(b)].
Same conclusions can be drawn: when ISI increases, du-
ration of the corresponding state decreases.

This ISI analysis reveals also a particular behavior
which is the unstable transition between a LS and a LS�1

state [right-hand side inset in Fig. 4(a)]. The system
changes from a LS state to a LS�1 one but returns to the
LS state once again before changing of state definitively.
Experimental observations, not presented here, show that
an alternation of two states differing by one failed peak can
be observed during several periods. Thus, transitions can
take place through the progressive occurrence of LS�1

patterns during a LS state. It suggests that the step-by-
step evolution of Fig. 4(a) could be compared to the devil’s
staircase which is an infinite self-similar staircase struc-
ture. This specific structure has been observed in chemistry
in the framework of MMOs [9,10,12,31] but also in a wide
range of other fields like in physiology [32] or in wave-
particle interaction [33]. In chemical systems, this structure
is often obtained by representing the firing number F �
L=�L� S� as a function of the control parameter. The
number of steps is then nearly infinite and in between
two parent states, an intermediate state exists with a firing
number related to the ones of the parent states by the Farey
arithmetic [9,12,31]. Thus, the structure obtained in
Fig. 4(a) can be an incomplete devil’s staircase with an
unidentified control parameter evolving with time and not
perfectly flat plateaus. More intermediate states could be
obtained with a more slowly varying system and thus it can
be speculated that the staircase could be partly completed.

In this Letter, we evidenced and characterized mixed-
mode oscillations in dusty plasmas. This work highlights
new situations of MMOs that can be of interest for improv-
ing dynamical system theories related to these structures.
The obtained structures are very similar to what is observed
in oscillating chemical systems and in neuronal activity.
These fields use well-known sets of equations giving rise to
MMOs. This scientific background can thus be used to
explore and develop new theoretical approaches in dusty
plasma dynamics.
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