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A simple linear kinetic model is used to investigate the combined effect of plasma absorption and ion-
neutral collisions on the electric potential around a small absorbing body in weakly ionized plasmas. It is
demonstrated that far from the body the potential decays considerably slower than the conventional
Debye-Hückel potential. Moreover, at distances exceeding approximately the ion mean free path, the
potential approaches an unscreened Coulomb-like asymptote. Some important consequences of this result
are discussed in the context of complex (dusty) plasmas.
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The study of the electric potential distribution around a
charged object immersed in an ionized medium is an
important basic problem pertinent to a wide variety of
physical systems ranging from colloidal suspensions to
different aspects of plasma physics, including astrophysi-
cal topics, technological plasma applications, probe diag-
nostics, etc. It is especially important in complex (dusty)
plasmas—systems consisting of highly charged micron-
size particles in a neutralizing plasma background [1]—
since electric interactions are often responsible for the
collective behavior of the particle component, e.g., self-
organization, formation of ordered (crystal-like) structures,
and phase transitions [2,3].

It is usually assumed that the electric potential around a
charged spherical grain in isotropic plasmas can be de-
scribed by the Debye-Hückel (Yukawa) form,

 ��r� � �Q=r� exp��r=��; (1)

where Q is the grain charge and � is the plasma screening
length. This result can be obtained by assuming Boltzmann
distributions for ions and electrons and solving the line-
arized Poisson equation. Linearization is often invalid in
complex plasmas since the grain surface (floating) poten-
tial is�s ��Te=e [1] and, therefore, ion-grain coupling is
strong close to the grain, provided Te � Ti. Nevertheless,
numerical solution of the nonlinear Poisson-Boltzmann
equation shows that the functional form of Eq. (1) still
persists, but the actual value of the grain charge should be
replaced by an effective charge which is somewhat smaller
in absolute magnitude [4].

A greater influence on the potential is effected by the
plasma absorption by the grain. The continuous ion and
electron fluxes to the grain surface make their distributions
non-Boltzmann. Although the deviations are only marginal
for repelled electrons [5], for attracted ions they are quite
substantial. In the absence of plasma production and loss in
the vicinity of the grain, conservation of plasma flux com-
pletely determines the far asymptote of the potential. As a
result, at large distances the potential is not screened ex-
ponentially but exhibits a power law decay. In collisionless
plasmas the far asymptote scales as��r� / r�2 [1,5]. In the
opposite limit of strongly collisional plasma the potential

has a Coulomb-like asymptote, ��r� / r�1 [6,7]. Hence,
collisions certainly affect the electric potential around an
absorbing grain.

There is reason to believe that the collisional contribu-
tion to the potential becomes significant even for relatively
rare ion-neutral collisions, a typical situation in gas dis-
charges. Recent numerical simulations [8,9], experiments
[10,11], and theoretical models [12,13] indicate that the ion
flux collected by the grain is affected by collisions even
when the ion mean free path ‘i is longer than �. In this
weakly collisional regime collisions enhance the ion flux,
which leads to a decrease in the absolute magnitude of the
grain charge. Since the magnitude of the long-range po-
tential is approximately proportional to the collected flux,
the collisional contribution to the potential should be sig-
nificant even if ‘i > �.

To get further insight into this problem we use a simple
linear kinetic model which accounts for the combined
effect of ion absorption on the grain and ion-neutral colli-
sions. We consider a small (pointlike) individual grain of
negative charge Q immersed in a stationary isotropic
weakly ionized plasma. We neglect plasma sources and
sinks in the vicinity of the grain, except at the grain surface,
which is fully absorbing. This implies that the character-
istic ionization or recombination length is considerably
larger than the length scale under investigation. For elec-
trons we use a Boltzmann distribution ne �
n0 exp�e�=Te�, where n0 is the unperturbed plasma den-
sity. The kinetic equation for the ions is
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where f is the ion velocity distribution function, fM �
�2�v2

Ti
��3=2 exp��v2=2v2

Ti
� is the Maxwellian distribution

function normalized to unity, ni �
R
fd3v is the ion den-

sity, and vTi �
�����������
Ti=m

p
is the ion thermal velocity. The first

term on the right-hand side is the model collision integral
in the Bhatnagar-Gross-Krook form [14] with a constant
effective ion-neutral collision frequency �. The second
term represents the ion loss on a small grain and is ex-
pressed through the effective (velocity dependent) collec-
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tion cross section��v�. Such a model kinetic description of
ion absorption on a pointlike grain has been recently
proposed in Ref. [15] for collisionless plasmas. In this
case ��v� can be obtained from the conservation laws of
energy and angular momentum, and under some additional
assumptions is given by the orbital motion limited (OML)
model [1]. In the collisional case ��v� has a less transpar-
ent physical meaning and apparently cannot be determined
from first principles. However, it is directly related to a
‘‘measurable’’ quantity—the ion flux that the grain col-
lects, Ji � n0

R
v��v�fM�v�d3v. This ‘‘normalization’’

condition will be employed below.
The equations for the electrons and ions are supple-

mented by the Poisson equation �� � �4�e�ni � ne� �
4�Q��r�. We linearize these equations assuming f �
n0fM � f1, ni�e� � n0 � n1i�e�, � � �1 and all perturba-
tions are proportional to exp�ikr�. The result is

 ��r� �
Q
r

exp��kDr� �
e
r

Z 1
0

kD sin�kr�f���dk

k2 � k2
D

	 �I ��II; (3)

where
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is the inverse linearized Debye

radius, kDi�e� � ��1
Di�e� and �Di�e� �
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�1, and �2 � v2=2v2
Ti

. The first term
�I in Eq. (3) is the familiar Debye-Hückel (DH) potential.
The second term �II appears due to ion absorption by the
grain and accounts for ion-neutral collisions. For a non-
absorbing grain [��v� 	 0] only the conventional DH form
survives, as expected. In this case ion-neutral collisions do
not affect the potential distribution.

When the grain absorbs plasma, the term �II is respon-
sible for deviations from the DH form. Let us consider two
limiting cases. In the collisionless (CL) limit we have � �
0, � � 0, and arctan��=�� � �=2. The collection cross
section is given by the OML model, ���� � �a2
1�
�z=	���2�, where a is the grain radius, z � jQje=aTe is
the grain charge in units of (aTe=e), and 	 � Te=Ti is the
electron-to-ion temperature ratio. This yields

 �II�r� � �
e
r
�a2n0�1� 2z	�

2kD
F �kDr�; (4)

where F �x� � 
e�xEi�x� � exEi��x�� and Ei�x� is the ex-
ponential integral. This expression was recently derived in
Ref. [15]. For x� 1, F �x� � 2=x and the normalized
potential is e�II�x�

Te
’ � 1

4 �
kDa
x �

2 1�2z	
1�	 , which coincides with

the well-known result of probe theory [1,5].
In the opposite strongly collisional (SC) regime we

have �� 1, arctan��=�� � �=�, and erf��� � 1�
��1=2e��

2
���1 � 1

2�
�2�. The actual form of ���� is not

important since the integral in f��� is directly expressed
through the ion flux Ji in this case. We get

 �II�r� ’ �
e
r

Ji
Dik2

D


1� e�kDr�; (5)

where Di � v2
Ti
=� is the diffusion coefficient of the ions.

This expression coincides with the results obtained using
the hydrodynamic approximation [16].

The most interesting regime relevant to the majority of
complex plasma experiments in gas discharges is the
weakly collisional (WC) regime, ‘i * �. In this case we
assume �! 0 which yields �� 1, arctan��=�� � �=2�
�=x, and erf��� ! 0. Next, we make an assumption about
the functional form of ����. We choose the simplest ap-
proximation ���� � �0, which allows us to avoid di-
vergence of the integrals in calculating f���. The value
of �0 follows from the normalization condition, �0 ����������
�=8

p
�Ji=n0vTi�. Integration yields

 �II�r� ’ �
e
r

����
�
p

4
���
2
p

Ji
kDvTi

�
F �kDr� �

"�3=2

‘ikD

1� e�kDr�

�
;

(6)

where " �
����
�
p
� 4��3=2 � 0:60 is a numerical factor.

The two terms in the curly brackets of Eq. (6) correspond
to absorption induced ‘‘collisionless’’ and ‘‘collisional’’
contributions, respectively. The collisional contribution to
the potential dominates for r * �2="�3=2�‘i � 0:6‘i.
Equation (6) is derived under the assumption kD‘i � 1,
but it yields correct result (to an accuracy of a numerical
factor close to unity) also in the opposite limit, kD‘i � 1,
as can be immediately seen by comparing Eqs. (5) and (6).
In the CL limit we substitute the OML expression for the
ion flux Ji �

�������
8�
p

a2n0vTi�1� z	� to get �II�r� �
��e=r���a2n0=2kD��1� z	�F �kDr�, which is different
from the exact expression (4) by a factor 1�z	

1�2z	 (� 1
2 since

usually z	� 1). This difference is related to our approxi-
mation of a constant collection cross section while the
dominant term in the OML model has a ���� / ��2

scaling.
To proceed further with the quantitative analysis we

need to specify the values of Ji and z. Different theoreti-
cal models [13,17] for the ion flux as well as formulas that
fit the simulation results [9] in a whole range of ion
collisionalities are available. However, in addition to the
relative complexity of the corresponding expressions,
their proper choice requires careful analysis of the approx-
imations involved and applicability conditions. This is
beyond the scope of this Letter. Instead, we use two simple
approximations providing reasonable accuracy in many
practical cases. In the WC regime we employ a simple
semiempirical expression Ji ’

�������
8�
p

a2n0vTi
1� z	�
0:1z2	2�kD‘i��1� which provides a reasonable fit for the
experimental and numerical simulation data on grain
charges in a weakly collisional plasma [1,11] and reduces
to the OML expression in the CL limit. In the SC limit the
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ion flux collected by a small grain is Ji ’ 4�an0Diz	 [1,7].
The dimensionless grain charge z is obtained by equating
ion and electron fluxes that the grain collect. In the WC
regime the electron flux is given by the OML model, Je ��������

8�
p

a2n0vTe exp��z�. For strongly collisional electrons
we have Je ’ 4�an0Dez exp��z� [7]. Then, for fixed gas
type, 	, kDa, and kD‘i, the normalized electric potential
can be calculated.

The results are presented in Fig. 1. The plasma parame-
ters used in these calculations are representative for com-
plex plasma experiments in gas discharges: argon gas,
	 � 100, and kDa � 0:01. The solid curves correspond
to numerical integration of Eq. (3) for three different ion
collisionality indexes kD‘i, the dashed curve corresponds
to the SC limit, and the dotted curve to the CL limit. For
reference, the dash-dotted curve shows the DH potential.
Note that the grain surface potentials are different for
different curves. This reflects the fact that not only the
functional form but also the initial value of the potential at
the grain surface depend on the ion collisionality. The inset
shows the comparison between direct numerical integra-
tion of Eq. (3) and the approximate expression for the WC
regime [Eqs. (3) and (6)]. The agreement is rather good and
improves with increasing ‘ikD, as expected.

Figure 1 demonstrates that the long-range asymptote of
the potential is dominated by the combined effect of colli-
sions and absorption. It exhibits Coulomb-like decay
��r� �Qeff=r, where the effective charge Qeff is deter-

mined from the plasma parameters and increases in abso-
lute magnitude with ion collisionality. At short distances
the potential follows the DH form (1), but the actual grain
charge shows a nonmonotonic dependence on kD‘i. In the
WC regime jQj decreases with increasing collisionality,
while in the SC regime jQj increases until it reaches a
maximum value when electron collection becomes colli-
sion dominated [7]. In the WC regime the transition from
short-range DH to the long-range Coulomb-like asymptote
occurs through an intermediate / r�2 decay. In the SC
regime the potential is Coulomb-like practically from the
grain surface. Note the intersection point at kDr � 1 for
the curves corresponding to the WC regime. For r < r the
absolute amplitude of the potential decreases with ion
collisionality, while for r > r the tendency is opposite.

Let us now briefly discuss some of the consequences of
the obtained results.

Intergrain coupling.—Consider the electric interaction
between a pair of grains. Assuming for simplicity that the
grains have equal charges which are independent of their
separation �, the interaction energy is U��� � Q����.
The interesting question is how the intergrain coupling,
measured in terms of U���, varies with the ion collision-
ality (neutral gas pressure). The answer depends on the ion
collisionality rate as well as on intergrain distance. For
weak and moderate collisionality U��� decreases with in-
creasing pressure for �< r since both j����j and jQj are
suppressed by collisions. For �> r the absolute magni-
tude of the electric potential increases with pressure, but
jQj decreases. Figure 1 indicates that the first effect domi-
nates and, therefore,U��� increases with pressure. Increas-
ing the pressure further we enter into the SC regime where
both j����j and jQj are increasing with ion collisionality.
Here the intergrain coupling increases with pressure inde-
pendently of �. This interesting nonmonotonic depen-
dence of coupling on pressure has to be investigated in
more detail. Of particular interest would be the possible
connection to experimentally observed melting of plasma
crystals when reducing gas pressure [3,18].

Phase diagram of complex plasmas.—Complex plasmas
are often modeled as an ensemble of grains interacting via
DH (Yukawa) repulsive potential. The phase diagram of
Yukawa systems has been extensively studied [19] because
Yukawa interaction operates in diverse physical systems
ranging from elementary particles to colloidal suspensions.
The static properties of Yukawa systems are determined by
two dimensionless parameters: coupling parameter � �
Q2=T� and structure (or lattice) parameter 
 � �=�,
where T characterizes the kinetic energy of the particle
component. Three phases are observed depending on � and

 [19]: two solid (bcc at lower 
 and fcc at higher 
) at
�> �M and a liquid phase at �< �M, where �M denotes
the coupling parameter at solid-liquid transition. A semi-
empirical melting (crystallization) condition �M ’
106e
�1�
�
2��1 yields remarkably good agreement
with numerical simulations (for 
 & 10) and reduces to
�M ’ 106 in the limit of one component plasmas (OCP)
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FIG. 1 (color online). Distribution of the normalized electric
potential around a small grain in an isotropic weakly ionized
plasma for different values of the ion collisionality index kD‘i.
The solid curves are obtained from Eq. (3). Dashed (dotted)
curve corresponds to an analytical approximation in strongly
collisional (collisionless) limit. Dash-dotted curve shows the DH
potential with the surface potential calculated from (collision-
less) OML model. Inset shows the comparison between direct
numerical integration of Eq. (3) (solid lines with symbols) and
the approximate expression for the weakly collisional regime
[Eqs. (3) and (6)] (dashed lines).
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[20]. However, it is clear from the results obtained above
that ion collisionality should also influence the solid-liquid
transition in complex plasmas, at least for 
 * 1. For
illustrative purposes let us consider the extreme case of
strongly collisional plasmas. Combining Eqs. (3) and (5)
with the expression for Ji in the SC limit we get U�r� ’
�Q2=r��kDi=kD�

2
1� �Ti=Te� exp��kDr��. Since usually
Te > Ti, the interaction potential is very close to the
Coulomb form for all r. Thus, in this case the phase
diagram of Yukawa systems is completely irrelevant.
Complex plasmas behave as a Coulomb system of particles
with effective charge Q�kDi=kD� somewhat smaller than
the actual charges due to partial plasma screening. The
crystallization or melting condition is �M ’ 106�kD=kDi�2.
For Te � Ti it reduces to �M * 106. For a one-
temperature plasma (Te � Ti) we get �M * 212.

Intergrain attraction.—Besides electrical effects, there
exist other mechanisms that contribute to intergrain inter-
actions in complex plasmas. These are associated with the
(thermodynamic) openness of these systems caused by the
continuous exchange of matter and energy between grains
and surrounding plasmas. For instance, constant plasma
absorption on the grains gives rise to a so-called ‘‘ion
shadowing’’ attractive force [21], which represents the
ion drag force that one grain experiences in ion flow
directed to a neighboring grain. Both long-range electric
repulsion and ion shadowing attraction stem from the
conservation of the ion flux collected by the grains; both
potentials have / r�1 asymptotes, and depending on their
relative magnitudes either attraction or repulsion occurs.
Let us derive an approximate condition for attraction. In
simplest approximation the ion drag force is proportional
to the product of the averaged ion flux density �ji, ion
momentum �pi, and momentum transfer cross section ��mt

for ion-grain collisions. The proportionality coefficient
depends on the functional form of �mt�v� as well as on
the ion velocity distribution function. For subthermal ion
drifts we have �pi � mvTi , ��mt�v� � �mt�vTi�, and from
flux conservation �ji � Ji=4�r2. Further, we assume a
Maxwellian distribution for the ions and use the modified
Coulomb scattering theory [22] to get the momentum
transfer cross section, �mt�v� ’ 4��Qe=mv2�2�, where
� is the modified Coulomb logarithm [22]. The result-

ing ion shadowing potential is Ush ’
1
3

���
2
�

q
�Qe=r��

�Jia=vTi�z	�. From this we get that jUshj> jUelj when
kD‘i * �3�5=2"=8���T���1, where �T � jQejkD=Ti is
the so-called (thermal) scattering parameter [22]. In typical
complex plasmas �T * 1. For a pointlike grain � ’
ln�1� ��1

T � and thus �T� & 1. Therefore, the necessary
condition for the presence of attraction is kD‘i *

�3�5=2"=8� ’ 4. Note that it is independent of the model
used for the ion flux since both potentials are proportional
to Ji.

The attraction criterion obtained requires reconsidera-
tion of the possibility and conditions for liquid-vapor phase
transition and critical point occurrence in complex plas-

mas. These were predicted on the basis of qualitative
similarities in interaction as compared to conventional
gases (electrical repulsion at short distances and attraction
at larger distances due to ion shadowing) [23], however,
without considering the effect of ion-neutral collisions.

To summarize, the combined effect of continuous ion
absorption and ion-neutral collisions has been demon-
strated to determine both the amplitude and the functional
form of the electric potential distribution around a small
absorbing grain in plasmas. Some important consequences
of this result have been briefly discussed in the context of
complex plasmas.
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