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It has been shown that the spectral fluctuations of different quantum systems are characterized by 1=f�

noise, with 1 � � � 2, in the transition from integrability to chaos. This result is not well understood. We
show that chaos-assisted tunneling gives rise to this power-law behavior. We develop a random matrix
model for intermediate quantum systems, based on chaos-assisted tunneling, and we discuss under which
conditions it displays 1=f� noise in the transition from integrability to chaos. We conclude that the
variance of the elements that connect regular with chaotic states must decay with the difference of energy
between them. We compare the characteristics of the transition modeled in this way with what is obtained
for the Robnik billiard.
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The quantum transition from integrability to chaos gives
rise to a change in the statistical properties of the energy
levels. Integrable systems display uncorrelated adjacent
energy levels, which are well described by Poisson statis-
tics [1]. On the contrary, fully chaotic systems show strong
repulsion between energy levels and follow the prediction
of Random Matrix Theory (RMT) [2]. However, typical
systems in nature are neither integrable, nor fully chaotic,
but somewhere in between; they are partially chaotic or
mixed. The spectral statistics of such kinds of systems is
not well understood. In the semiclassical limit (@! 0), it is
well described by the Principle of Uniform Semiclassical
Condensation (PUSC) of Wigner function of eigenstates
[3,4]; but this theory constitutes a good approximation only
if the energy is sufficiently large. Tunneling effects be-
tween chaotic and regular states provide a more complete
description [5] (see below for details).

One of the main features of mixed systems is the frac-
tional power-law level repulsion (see [6] and references
therein), which cannot be explained by PUSC. Level re-
pulsion is an universal characteristic of chaotic systems; it
implies that the distance between two adjacent energy
levels, si � �i�1 � �i [7], cannot be equal to zero, and
P�s� ! s for s! 0. In many mixed systems, P�s� ! s�,
with 0 � � � 1, for s! 0.

Recently, another fractional power-law behavior has
been identified. The sequence of energy levels can be
considered as a time series, where the energy plays the
role of time. Following this analogy, it is well established
that fully chaotic systems give rise to 1=f noise, whereas
integrable systems are characterized by 1=f2 noise [9,10].
For the intermediate regime, it has been found that differ-
ent quantum systems display 1=f� noise, with 1 � � � 2
[11,12]. (Note that the 1=f� behavior entails a similar
fractional exponent in the form factor, K��� / ��, � �
2� �, for �� 1 [10].) This feature has not been previ-
ously explained; in particular, PUSC predicts a mixture of
1=f and 1=f2 behaviors [13]. Random matrix models give
rise to a similar result [14,15].

Power-law level repulsion has been recently explained
resorting to chaos-assisted tunneling. In a partially chaotic
quantum system, different invariant tori can be connected
by means of quantum dynamical tunneling, mediated by
states in the chaotic part of the phase space [5]. This
process can be modeled with random matrix ensembles,
in which independent Gaussian random variables connect
chaotic with integrable subspaces [5,16–18]. These models
describe the level splitting distribution [16] and the power-
law level repulsion [18,19] in mixed systems. Recently, a
semiclassical formalism has been derived to calculate the
variance of the connecting elements [17,20].

In this Letter, we show that chaos-assisted tunneling can
also explain the 1=f� behavior found in mixed systems.
Our point of departure is a random matrix ensemble in
which all the elements are independent Gaussian random
variables. The key issue of our model is that, contrary to
what it is usual [5,16–21], the variance of the connecting
elements is not a constant, but it depends on the difference
of energy between regular and chaotic states. Our results
suggest that it is mandatory to take into account this fact to
obtain the 1=f� behavior characteristic of the transition
from integrability to chaos.

The Hamiltonian of a mixed system can be written in the
following form
 

H �
X
R

ERj�Rih�Rj �
X
R

ECj�Cih�Cj

�
X
RC

fVCRj�Cih�Rj � c:c:g; (1)

where ER and �R are the energies and wave functions of
regular states; EC and �C, the energies and wave functions
of chaotic states; and VRC describes the interaction be-
tween regular and chaotic states. A random matrix model
for this Hamiltonian is

 H �
GOE V
V GDE

� �
: (2)
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Gaussian Orthogonal Ensemble (GOE) and Gaussian
Diagonal Ensemble (GDE) represent square diagonal sub-
matrices, whose elements are the eigenvalues of a matrix
belonging to the GOE and a matrix belonging to the GDE,
respectively; they describe the chaotic and the regular
energy levels. V determines the tunneling rate between
these states.

If we set V to zero, this model implements the scenario
of PUSC, giving rise to the Berry-Robnik nearest neighbor
distribution [4]. Its only free parameter is the ratio between
the number of chaotic NC and regular states NR, which is
equivalent to the ratio of the corresponding parts of the
classical phase space, � � NR=�NC � NR�.

To model chaos-assisted tunneling, we introduce a V
matrix composed by independent Gaussian random varia-
bles. The variance of these elements is usually taken as a
constant, estimated by means of semiclassical arguments
[17,19,20] or fitted as a free parameter [5,16,18,21]. Such a
model reproduces the fractional level repulsion, but, as we
will see below, it does not give rise to 1=f� noise in the
transition form order to chaos. Here, we consider a more
complex model: we assume that the amplitude of the
connecting depends on the difference of energy between
the connected states h�CjHj�Ri � f�jEC � ERj�.

To implement this assumption, the elements Vij are
generated as Gaussian random variables, with a nonconst-
ant variance �ij � f�jECi � E

R
j j�. We build the model in

terms of the average values of the energy levels ECi and ERj
to assure that it is well defined by a single probability
distribution—the sequences of actual chaotic fECi g and
regular fERj g energy levels are different for each matrix.

Let us consider two levels at energies EC and ER �
EC � d that have a finite width and are described by
Gaussians with variances �R and �C, respectively. As
tunneling only takes place between states with the same
energy [5], it is reasonable to consider that the tunneling
amplitude is proportional to the overlap between these two
Gaussians, which can be measured as the area below their
intersection. In general, this gives rise to an involved
expression, which consists of a sum of several error func-
tions, depending on �C, �R, and d; its decay is faster or
slower in function of the specific values of these parame-
ters. As a simplified model, we propose an exponential
function

 �ij � exp���jECi � E
R
j j�; (3)

which only depends on two independent parameters: the
ratio between regular and chaotic states, �, and the decay
rate of the V elements, �. This function has the advantage
that it is more tractable than the sum of several error
functions, giving rise to a similar decay, depending on
the value of �. As a more realistic model, we also propose

 �ij � 1� Erf��jECi � E
R
j j�: (4)

If we consider that the connected regular and chaotic levels
have the same width �, then 1=� �

���
2
p
�; thus, both

parameters of the model � and � can be directly related
to physical magnitudes. We will see that both choices for
�ij give rise to similar results.

What follows is a numerical diagonalization of this set
of random matrices. We have built the chaotic part of the
Hamiltonian diagonalizing GOE matrices with dimension
N � 3000�, and the regular part generating N �
3000�1� �� uncorrelated random Gaussian variables.
Both sequences have been rescaled such that their mean
density of levels is equal to a Gaussian with 	 � 0 and
� � 1; thus, all the variables of the model are Gaussian. V
matrices have been built considering that, in this case,

ER;Ci �
���
2
p
fErf�1��2i� NR;C�=NR;C	g, where Erf�1 is the

inverse of the error function. To avoid spurious effects due
to the unfolding procedure, we analyze only sequences of
1000 levels coming from the central part of each spectrum.

To study the spectral fluctuations, we use the statistic

n � �n�1 � �1 � n, where f�ig is the sequence of un-
folded energy levels [7]. We are interested in its power
spectrum

 P
k �
��������

1����
N
p

XN
n�1


n exp
�
�2�ikn

N

���������
2
: (5)

In Fig. 1, we show the average power spectrum hP
k i
calculated with Eq. (3), for six representative values of �
and �; it is obtained averaging over 20 different matrices
for each value of � and �. Solid lines represent the least-
square fit to a power law hP
k i � A=k�. The results of the
fitting procedure are shown in the fourth column of Table I.
We can see that all the cases depicted display a power-law
behavior of hP
k i for different values of �, which cover the
complete transition from integrability to chaos. The first
points do not follow this power law because the unfolding
procedure introduces spurious effects in them [22]. There
is also a small discrepancy between the numerical results
and the power-law fit in the high-frequency region; this is
expected to occur for any value of �, since the 1=f�

behavior is an approximation which is not accurate in the
high-frequency region for both fully chaotic (� � 1) and
integrable (� � 2) limits [10]. Similar results are obtained
with Eq. (4).

To check that this model also displays fractional level
repulsion, we have fitted the numerical results to the Brody
formula for the nearest neighbor spacing distribution [8],
P�s� 
 s!, s� 1. The results are shown in the fifth col-
umn of Table I. As it has been previously obtained in some
systems [11], we can see that the P�s� distribution changes
faster than hP
k i statistic. This fact can be understood as
follows. The P�s� distribution measures the distance be-
tween consecutive energy levels; it takes into account only
very short-range correlations. On the contrary, hP
k i statis-
tic measures both short- and long-range correlations; the
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former ones determine the trend of the high-frequency
region, and the last ones, the behavior of the low-frequency
region. Thus, a global measure of all the frequencies, as the
exponent �, cannot be univocally related to the Brody
parameter.

In Fig. 2, we compare our model with one in which all
the elements of V are generated with the same variance �.
We have chosen two intermediate cases between regularity
and chaos: for our model, we use Eq. (3) and � � 0:5, � �

30; for the ensemble characterized by a constant variance,
� � 0:5, � � 2 � 10�3. We plot the numerical results to-
gether with the power-law fit for the former (� � 1:58�
0:01), and the theoretical predictions for chaotic and regu-
lar spectra [10]. We can see that the ensemble with a
constant variance does not display a power-law behavior.
Instead, the high-frequency region follows the chaotic
behavior, whereas the low-frequency region is closer to
the regular one. This entails that the transition does not
affect uniformly the whole spectrum, but short-range cor-
relations transit to the behavior of chaotic spectra faster
than long-range ones; this feature defines a critical scale in
which the transition takes place. In some systems, this
scale has a physical meaning; in [14], it has been used to
estimate the Thouless energy in the Anderson transition.
On the contrary, in our model, the transition is manifested
over all the scales, and therefore it is not characterized by a
critical scale.

To test the applicability of our model, we analyze how
the exponent � changes with the fraction of regular clas-
sical trajectories �. This calculation has been previously
done for the Robnik billiard, which transits from integra-
bility to fully developed chaos [11]. To compare the curve
���� of this system with the one obtained with our model,
we fix the decay rates of the connecting elements � and �
and change only � along the transition. This procedure
gives rise to a plausible physical scenario; as we have no
information about the real coupling between the regular
and chaotic states in the Robnik billiard, it is reasonable to
assume that it does not change with �. The results are
shown in Fig. 3. We can see that the Robnik billiard and our
model display the same qualitative behavior. In both cases,
the major change in the exponent � happens for almost
chaotic phase spaces (when the majority of the states are
chaotic, in our model); for � > 0:1–0:2, all the curves
change very slowly. From a quantitative point of view,
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FIG. 2. Comparison between hP
k i obtained with Eq. (3), for
� � 30 (filled circles), and a similar model in which the variance
of the elements of V is constant � � 2 � 10�3 (empty circles); in
both cases, � � 0:5. The solid line represents the power law
hP
k i � A=k�, � � 1:58� 0:01, and the dotted lines represent
the theoretical predictions for GOE and GDE.

TABLE I. Results for the exponents � and ! for the cases
plotted in Fig. 1.

Fig. � � � !

1a 0.8 5000 1:92� 0:03 0:053� 0:007
1b 0.6 1000 1:84� 0:03 0:056� 0:006
1c 0.3 250 1:74� 0:02 0:36� 0:04
1d 0.1 250 1:47� 0:03 0:89� 0:02
1e 0.1 100 1:30� 0:04 0:90� 0:02
1f 0.03 100 1:13� 0:02 0:94� 0:01
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FIG. 1. hP
k i for six different values of � and � (see Table I).
Filled circles represent the average numerical results for 20
matrices of N � 3000; the solid line is the least-square fit to a
power law hP
k i � A=k�.
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the cases � � 1000 and � � 200 give a good description
of the behavior of the Robnik billiard for � < 0:1; for
larger values of �, the cases � � 250 and � � 50 give
better results. The fact that both proposed decay rates,
Eq. (3) and (4), give rise to the same qualitative behavior
is a signature of the robustness of the model. The precise
shape of the decay is needed for a quantitative fit, but the
main features of the transition can be reproduced with
several fastly decaying connecting elements.

In conclusion, we have shown that chaos-assisted tun-
neling can explain the 1=f� found in some quantum sys-
tems in the transition from integrability to chaos [11,12].
We have proposed a Gaussian random matrix ensemble
which gives rise to this behavior. We have shown that the
random elements which connect chaotic with regular states
must not be generated with a constant variance, as it was
previously done [5,16–21]. We have proposed instead a
model in which the variance of these random elements
decays fastly with the difference of energy between the
connected states; this reflects the fact that chaos-assisted
tunneling is only important when chaotic and regular states
are close in energy [5]. With this model, we have obtained
a complete transition from integrability to chaos, charac-
terized by a power law 1=f� with 1 � � � 2. We have
compared how the exponent � changes with the proportion
of integrable states � in our model, with the previously
published results for the Robnik billiard. We have con-
cluded that our model reproduces the qualitative feature of
the transition, for two different kinds of decay for the
connecting elements. Moreover, a quantitative description
can be obtained if we allow the rate of decay of the
connecting elements � or � to change along the transition.
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FIG. 3. Exponent � vs fraction of regular classical trajectories
�, for the Robnik billiard [11] (squares), and several realizations
of our model. Filled circles are obtained with Eq. (3), with � �
250; for solid triangles, � � 1000. Empty circles are obtained
with Eq. (4), with � � 50; for empty triangles, � � 200.
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